Optimización del rendimiento

Denuncia un problema Ver fuente Nightly · 7.4 . 7.3 · 7.2 · 7.1 · 7.0 · 6.5

Cuando se escriben reglas, el error de rendimiento más común es desviar o copiar datos que se acumulan desde las dependencias. Cuando se agregan a toda la compilación, estas operaciones pueden ocupar fácilmente tiempo o espacio de O(N^2). Para evitar esto, es fundamental comprender cómo usar las dependencias de forma eficaz.

Esto puede ser difícil de hacer correctamente, por lo que Bazel también proporciona un generador de perfiles de memoria que ayuda a encontrar lugares en los que podrías haber cometido un error. Ten en cuenta que el costo de escribir una regla ineficiente puede no ser evidente hasta que se use de forma generalizada.

Usa depsets

Cada vez que resumas información de las dependencias de reglas, debes usar depsets. Solo usa listas sin formato o diccionarios para publicar información local en la regla actual.

Un conjunto de dependencias representa la información como un gráfico anidado que permite el uso compartido.

Considera el siguiente gráfico:

C -> B -> A
D ---^

Cada nodo publica una sola cadena. Con los conjuntos de dependencias, los datos se ven de la siguiente manera:

a = depset(direct=['a'])
b = depset(direct=['b'], transitive=[a])
c = depset(direct=['c'], transitive=[b])
d = depset(direct=['d'], transitive=[b])

Ten en cuenta que cada elemento solo se menciona una vez. Con las listas, obtendrías lo siguiente:

a = ['a']
b = ['b', 'a']
c = ['c', 'b', 'a']
d = ['d', 'b', 'a']

Ten en cuenta que, en este caso, 'a' se menciona cuatro veces. Con gráficos más grandes, este problema empeorará.

A continuación, se muestra un ejemplo de una implementación de reglas que usa depsets correctamente para publicar información transitiva. Ten en cuenta que está bien publicar información local de reglas con listas si lo deseas, ya que no es O(N^2).

MyProvider = provider()

def _impl(ctx):
  my_things = ctx.attr.things
  all_things = depset(
      direct=my_things,
      transitive=[dep[MyProvider].all_things for dep in ctx.attr.deps]
  )
  ...
  return [MyProvider(
    my_things=my_things,  # OK, a flat list of rule-local things only
    all_things=all_things,  # OK, a depset containing dependencies
  )]

Consulta la página depset overview para obtener más información.

Evita llamar a depset.to_list()

Puedes forzar un conjunto de dependencias a una lista plana con to_list(), pero hacerlo suele generar un costo de O(N^2). Si es posible, evita aplanar los conjuntos de dependencias, excepto para depuración.

Un error común es pensar que puedes aplanar los conjuntos de dependencias de forma libre si solo lo haces en objetivos de nivel superior, como una regla <xx>_binary, ya que el costo no se acumula en cada nivel del gráfico de compilación. Sin embargo, esto sigue siendo O(N^2) cuando compilas un conjunto de destinos con dependencias superpuestas. Esto sucede cuando compilas tus pruebas //foo/tests/... o cuando importas un proyecto de IDE.

Reducir la cantidad de llamadas a depset

Llamar a depset dentro de un bucle suele ser un error. Puede generar conjuntos de dependencias con anidamiento muy profundo, que tienen un rendimiento bajo. Por ejemplo:

x = depset()
for i in inputs:
    # Do not do that.
    x = depset(transitive = [x, i.deps])

Este código se puede reemplazar fácilmente. Primero, recopila las salidas transitivas y combínalas todas a la vez:

transitive = []

for i in inputs:
    transitive.append(i.deps)

x = depset(transitive = transitive)

Esto se puede reducir con una comprensión de listas:

x = depset(transitive = [i.deps for i in inputs])

Cómo usar ctx.actions.args() para las líneas de comandos

Cuando compilas líneas de comandos, debes usar ctx.actions.args(). Esto aplaza la expansión de cualquier conjunto de dependencias a la fase de ejecución.

Además de ser estrictamente más rápido, esto reducirá el consumo de memoria de tus reglas, a veces en un 90% o más.

Estos son algunos trucos:

  • Pasa depsets y listas directamente como argumentos, en lugar de aplanarlos por tu cuenta. ctx.actions.args() los expandirá por ti. Si necesitas realizar alguna transformación en el contenido de depset, consulta ctx.actions.args#add para ver si hay algo que se adapte a tus necesidades.

  • ¿Pasas File#path como argumentos? No es necesario. Cualquier archivo se convierte automáticamente en su ruta, que se aplaza hasta el momento de la expansión.

  • Evita construir cadenas concatenándolas juntas. El mejor argumento de cadena es una constante, ya que su memoria se compartirá entre todas las instancias de tu regla.

  • Si los argumentos son demasiado largos para la línea de comandos, un objeto ctx.actions.args() se puede escribir de forma condicional o no en un archivo de parámetros con ctx.actions.args#use_param_file. Esto se hace en segundo plano cuando se ejecuta la acción. Si necesitas controlar de forma explícita el archivo de parámetros, puedes escribirlo de forma manual con ctx.actions.write.

Ejemplo:

def _impl(ctx):
  ...
  args = ctx.actions.args()
  file = ctx.declare_file(...)
  files = depset(...)

  # Bad, constructs a full string "--foo=<file path>" for each rule instance
  args.add("--foo=" + file.path)

  # Good, shares "--foo" among all rule instances, and defers file.path to later
  # It will however pass ["--foo", <file path>] to the action command line,
  # instead of ["--foo=<file_path>"]
  args.add("--foo", file)

  # Use format if you prefer ["--foo=<file path>"] to ["--foo", <file path>]
  args.add(format="--foo=%s", value=file)

  # Bad, makes a giant string of a whole depset
  args.add(" ".join(["-I%s" % file.short_path for file in files])

  # Good, only stores a reference to the depset
  args.add_all(files, format_each="-I%s", map_each=_to_short_path)

# Function passed to map_each above
def _to_short_path(f):
  return f.short_path

Las entradas de acciones transitivas deben ser depsets

Cuando compiles una acción con ctx.actions.run, no olvides que el campo inputs acepta un depósito. Úsalo cada vez que se recopilen entradas de dependencias de forma transitiva.

inputs = depset(...)
ctx.actions.run(
  inputs = inputs,  # Do *not* turn inputs into a list
  ...
)

Colgado

Si Bazel parece estar bloqueado, puedes presionar Ctrl + \ o enviarle un indicador SIGQUIT (kill -3 $(bazel info server_pid)) para obtener un volcado de subproceso en el archivo $(bazel info output_base)/server/jvm.out.

Dado que es posible que no puedas ejecutar bazel info si bazel está bloqueado, el directorio output_base suele ser el superior del symlink bazel-<workspace> en el directorio de tu espacio de trabajo.

Generación de perfiles de rendimiento

El perfil de seguimiento de JSON puede ser muy útil para comprender rápidamente en qué estuvo Bazel durante la invocación.

La marca --experimental_command_profile se puede usar para capturar perfiles de Java Flight Recorder de varios tipos (tiempo de CPU, tiempo de ejecución, asignaciones de memoria y contención de bloqueo).

La marca --starlark_cpu_profile se puede usar para escribir un perfil de pprof del uso de la CPU por parte de todos los subprocesos de Starlark.

Generación de perfiles de memoria

Bazel incluye un generador de perfiles de memoria integrado que puede ayudarte a verificar el uso de memoria de tu regla. Si hay un problema, puedes volcar el montón para encontrar la línea exacta de código que lo causa.

Habilita el seguimiento de memoria

Debes pasar estas dos marcas de inicio a cada invocación de Bazel:

  STARTUP_FLAGS=\
  --host_jvm_args=-javaagent:<path to java-allocation-instrumenter-3.3.0.jar> \
  --host_jvm_args=-DRULE_MEMORY_TRACKER=1

Estos inician el servidor en el modo de seguimiento de memoria. Si olvidas estos parámetros para una sola invocación de Bazel, el servidor se reiniciará y deberás comenzar de nuevo.

Cómo usar el Monitor de memoria

A modo de ejemplo, observa el foo de destino y observa lo que hace. Para ejecutar solo el análisis y no la fase de ejecución de compilación, agrega la marca --nobuild.

$ bazel $(STARTUP_FLAGS) build --nobuild //foo:foo

A continuación, consulta cuánta memoria consume toda la instancia de Bazel:

$ bazel $(STARTUP_FLAGS) info used-heap-size-after-gc
> 2594MB

Desglosa por clase de regla con bazel dump --rules:

$ bazel $(STARTUP_FLAGS) dump --rules
>

RULE                                 COUNT     ACTIONS          BYTES         EACH
genrule                             33,762      33,801    291,538,824        8,635
config_setting                      25,374           0     24,897,336          981
filegroup                           25,369      25,369     97,496,272        3,843
cc_library                           5,372      73,235    182,214,456       33,919
proto_library                        4,140     110,409    186,776,864       45,115
android_library                      2,621      36,921    218,504,848       83,366
java_library                         2,371      12,459     38,841,000       16,381
_gen_source                            719       2,157      9,195,312       12,789
_check_proto_library_deps              719         668      1,835,288        2,552
... (more output)

Para ver a dónde se dirige la memoria, genera un archivo pprof con bazel dump --skylark_memory:

$ bazel $(STARTUP_FLAGS) dump --skylark_memory=$HOME/prof.gz
> Dumping Starlark heap to: /usr/local/google/home/$USER/prof.gz

Usa la herramienta pprof para investigar el montón. Un buen punto de partida es obtener un gráfico tipo llama con pprof -flame $HOME/prof.gz.

Obtén pprof en https://github.com/google/pprof.

Obtén un volcado de texto de los sitios de llamadas más populares con anotaciones de líneas:

$ pprof -text -lines $HOME/prof.gz
>
      flat  flat%   sum%        cum   cum%
  146.11MB 19.64% 19.64%   146.11MB 19.64%  android_library <native>:-1
  113.02MB 15.19% 34.83%   113.02MB 15.19%  genrule <native>:-1
   74.11MB  9.96% 44.80%    74.11MB  9.96%  glob <native>:-1
   55.98MB  7.53% 52.32%    55.98MB  7.53%  filegroup <native>:-1
   53.44MB  7.18% 59.51%    53.44MB  7.18%  sh_test <native>:-1
   26.55MB  3.57% 63.07%    26.55MB  3.57%  _generate_foo_files /foo/tc/tc.bzl:491
   26.01MB  3.50% 66.57%    26.01MB  3.50%  _build_foo_impl /foo/build_test.bzl:78
   22.01MB  2.96% 69.53%    22.01MB  2.96%  _build_foo_impl /foo/build_test.bzl:73
   ... (more output)