相约 2023 年 BazelCon 将于 10 月 24 日至 25 日在 Google 慕尼黑举办!了解详情

优化性能

报告问题 查看源代码

编写规则时,最常见的性能误区是遍历或复制从依赖项累积的数据。如果对整个 build 进行汇总,这些操作会很容易占用 O(N^2) 时间或空间。为避免这种情况,您必须了解如何有效地使用依赖项。

这可能很难做出正确选择,因此 Bazel 还提供内存分析器,帮助您查找可能犯错的位置。注意:在大范围使用之前,编写低效规则的代价可能并不明显。

使用依赖项

每当您滚动来自规则依赖项的信息时,都应使用 depsets。仅使用普通列表或字典来发布当前规则本地的信息。

预设将信息表示为可启用共享的嵌套图。

请参考以下图表:

C -> B -> A
D ---^

每个节点都会发布一个字符串。使用 dessets,数据如下所示:

a = depset(direct=['a'])
b = depset(direct=['b'], transitive=[a])
c = depset(direct=['c'], transitive=[b])
d = depset(direct=['d'], transitive=[b])

请注意,每项只被提及一次。使用列表,您会得到:

a = ['a']
b = ['b', 'a']
c = ['c', 'b', 'a']
d = ['d', 'b', 'a']

请注意,在本例中,'a' 被提及了四次!在使用更大的图表时,这个问题只会变得更加严重。

下面是一个规则实现示例,该实现正确使用依赖项来发布传递信息。请注意,如果您愿意,可以使用列表发布规则本地信息,因为这不是 O(N^2)。

MyProvider = provider()

def _impl(ctx):
  my_things = ctx.attr.things
  all_things = depset(
      direct=my_things,
      transitive=[dep[MyProvider].all_things for dep in ctx.attr.deps]
  )
  ...
  return [MyProvider(
    my_things=my_things,  # OK, a flat list of rule-local things only
    all_things=all_things,  # OK, a depset containing dependencies
  )]

如需了解详情,请参阅预设概览页面。

避免调用 depset.to_list()

您可以使用 to_list() 将偏移量强制转换为平面列表,但通常会产生 O(N^2) 费用。请尽可能避免除调试之外的任何扁平化偏移。

一种常见的误解是,如果您只在顶级目标(如 <xx>_binary 规则)中这么做,就可以自由地拆分偏移,因为费用不会累计在构建图的每个级别上。但当您构建一组具有重叠依赖项的目标时,这仍是 O(N^2)。构建测试 //foo/tests/... 或导入 IDE 项目时,会发生这种情况。

减少对 depset 的调用次数

在循环内调用 depset 通常是一个错误。这会导致出现非常深的嵌套,进而导致性能下降。例如:

x = depset()
for i in inputs:
    # Do not do that.
    x = depset(transitive = [x, i.deps])

此代码可轻松替换。首先,收集传递依赖项并一次性将它们全部合并:

transitive = []

for i in inputs:
    transitive.append(i.deps)

x = depset(transitive = transitive)

有时,可通过运用理解来实现这一点:

x = depset(transitive = [i.deps for i in inputs])

为命令行使用 ctx.actions.args()

构建命令行时,您应使用 ctx.actions.args()。这会将任何依赖项推迟到执行阶段。

除了严格加快速度之外,还可以将规则的内存消耗量减少 90% 或更多。

以下是一些提示:

  • 请直接将参数和列表作为参数传递,而不是自行拆分它们。它们会为您展开 ctx.actions.args()。 如果您需要对偏移内容进行任何转换,请查看 ctx.actions.args#add 以了解是否有任何内容符合帐单。

  • 是否将 File#path 作为参数传递?不需要。任何 File 都将自动推迟到其 path,并推迟到展开时间。

  • 避免通过将字符串串联在一起来构造字符串。最佳字符串参数是一个常量,因为其内存将在规则的所有实例之间共享。

  • 如果参数对于命令行来说过长,可以使用 ctx.actions.args#use_param_file 有条件地或无条件地写入参数文件。系统会在执行操作时在后台完成该操作。如果您需要明确控制参数文件,可以使用 ctx.actions.write 手动编写。

例如:

def _impl(ctx):
  ...
  args = ctx.actions.args()
  file = ctx.declare_file(...)
  files = depset(...)

  # Bad, constructs a full string "--foo=<file path>" for each rule instance
  args.add("--foo=" + file.path)

  # Good, shares "--foo" among all rule instances, and defers file.path to later
  # It will however pass ["--foo", <file path>] to the action command line,
  # instead of ["--foo=<file_path>"]
  args.add("--foo", file)

  # Use format if you prefer ["--foo=<file path>"] to ["--foo", <file path>]
  args.add(format="--foo=%s", value=file)

  # Bad, makes a giant string of a whole depset
  args.add(" ".join(["-I%s" % file.short_path for file in files])

  # Good, only stores a reference to the depset
  args.add_all(files, format_each="-I%s", map_each=_to_short_path)

# Function passed to map_each above
def _to_short_path(f):
  return f.short_path

传递的操作输入应为 depset

使用 ctx.actions.run 构建操作时,不要忘记 inputs 字段接受预设。每当以传递方式从依赖项收集输入时,都要使用此选项。

inputs = depset(...)
ctx.actions.run(
  inputs = inputs,  # Do *not* turn inputs into a list
  ...
)

悬挂式

如果 Bazel 似乎挂起,您可以按 Ctrl-\ 键或向 Bazel 发送 SIGQUIT 信号 (kill -3 $(bazel info server_pid)),以在文件 $(bazel info output_base)/server/jvm.out 中获取线程转储。

由于如果 bazel 挂起,您可能无法运行 bazel info,因此 output_base 目录通常是工作区目录中 bazel-<workspace> 符号链接的父级。

性能剖析

JSON 跟踪记录配置文件非常有用,可让您快速了解 Bazel 在调用期间花费的时间。

内存性能分析

Bazel 附带内置内存分析器,可以帮助您检查规则的内存使用情况。如果出现问题,您可以转储堆,以查找导致问题的确切代码行。

启用内存跟踪

您必须将以下两个启动标志传递给每个 Bazel 调用:

  STARTUP_FLAGS=\
  --host_jvm_args=-javaagent:$(BAZEL)/third_party/allocation_instrumenter/java-allocation-instrumenter-3.3.0.jar \
  --host_jvm_args=-DRULE_MEMORY_TRACKER=1

这些命令以内存跟踪模式启动服务器。即使您忘记了一次 Bazel 调用,服务器也会重启,而您必须重新开始。

使用内存跟踪器

例如,查看目标 foo 并了解它的功能。若要仅运行分析而不运行构建执行阶段,请添加 --nobuild 标志。

$ bazel $(STARTUP_FLAGS) build --nobuild //foo:foo

接下来,查看整个 Bazel 实例使用了多少内存:

$ bazel $(STARTUP_FLAGS) info used-heap-size-after-gc
> 2594MB

使用 bazel dump --rules 按规则类对其进行细分:

$ bazel $(STARTUP_FLAGS) dump --rules
>

RULE                                 COUNT     ACTIONS          BYTES         EACH
genrule                             33,762      33,801    291,538,824        8,635
config_setting                      25,374           0     24,897,336          981
filegroup                           25,369      25,369     97,496,272        3,843
cc_library                           5,372      73,235    182,214,456       33,919
proto_library                        4,140     110,409    186,776,864       45,115
android_library                      2,621      36,921    218,504,848       83,366
java_library                         2,371      12,459     38,841,000       16,381
_gen_source                            719       2,157      9,195,312       12,789
_check_proto_library_deps              719         668      1,835,288        2,552
... (more output)

使用 bazel dump --skylark_memory 生成 pprof 文件,查看内存的去向:

$ bazel $(STARTUP_FLAGS) dump --skylark_memory=$HOME/prof.gz
> Dumping Starlark heap to: /usr/local/google/home/$USER/prof.gz

使用 pprof 工具调查堆。不妨先使用 pprof -flame $HOME/prof.gz 获取火焰图。

https://github.com/google/pprof 获取 pprof

获取用行注释的最热门的调用网站的文本转储:

$ pprof -text -lines $HOME/prof.gz
>
      flat  flat%   sum%        cum   cum%
  146.11MB 19.64% 19.64%   146.11MB 19.64%  android_library <native>:-1
  113.02MB 15.19% 34.83%   113.02MB 15.19%  genrule <native>:-1
   74.11MB  9.96% 44.80%    74.11MB  9.96%  glob <native>:-1
   55.98MB  7.53% 52.32%    55.98MB  7.53%  filegroup <native>:-1
   53.44MB  7.18% 59.51%    53.44MB  7.18%  sh_test <native>:-1
   26.55MB  3.57% 63.07%    26.55MB  3.57%  _generate_foo_files /foo/tc/tc.bzl:491
   26.01MB  3.50% 66.57%    26.01MB  3.50%  _build_foo_impl /foo/build_test.bzl:78
   22.01MB  2.96% 69.53%    22.01MB  2.96%  _build_foo_impl /foo/build_test.bzl:73
   ... (more output)