編寫規則時,最常見的效能問題是掃遍或複製從依附元件累積的資料。在整個建構作業中進行匯總時,這些作業很容易使用 O(N^2) 時間或空間。為避免這種情況,請務必瞭解如何有效使用 depset。
這項工作可能很難正確執行,因此 Bazel 也提供記憶體分析器,協助您找出可能出錯的地方。請注意:編寫效率不彰的規則可能會造成成本,但只有在廣泛使用後才會顯現。
使用 depset
每當您從規則依附元件匯總資訊時,都應使用 depsets。請只使用純文字清單或字典,在目前規則的本機發布資訊。
depset 會以巢狀圖方式呈現資訊,因此可以分享。
請參考下列圖表:
C -> B -> A
D ---^
每個節點都會發布單一字串。使用 depset 時,資料會如下所示:
a = depset(direct=['a'])
b = depset(direct=['b'], transitive=[a])
c = depset(direct=['c'], transitive=[b])
d = depset(direct=['d'], transitive=[b])
請注意,每個項目只會提及一次。使用清單時,您會看到以下畫面:
a = ['a']
b = ['b', 'a']
c = ['c', 'b', 'a']
d = ['d', 'b', 'a']
請注意,在本例中 'a'
被提及了四次!對於較大的圖表,這個問題只會更嚴重。
以下是規則實作範例,正確使用 Depset 發布遞移資訊。請注意,如果您想使用清單發布規則本機資訊,這並不會造成 O(N^2) 的情況,因此可以使用清單發布。
MyProvider = provider()
def _impl(ctx):
my_things = ctx.attr.things
all_things = depset(
direct=my_things,
transitive=[dep[MyProvider].all_things for dep in ctx.attr.deps]
)
...
return [MyProvider(
my_things=my_things, # OK, a flat list of rule-local things only
all_things=all_things, # OK, a depset containing dependencies
)]
詳情請參閱 depset 總覽頁面。
避免撥打 depset.to_list()
您可以使用 to_list()
將 depset 強制轉換為平面清單,但這通常會導致 O(N^2) 成本。盡可能避免對 depset 進行任何扁平化,除非是為了偵錯。
常見的誤解是,如果您只在頂層目標 (例如 <xx>_binary
規則) 上執行此操作,就可以自由地扁平化 depset,因為這樣不會在建構圖的每個層級累積成本。不過,當您建構一組具有重疊依附元件的目標時,這仍是 O(N^2)。這會發生在建構測試 //foo/tests/...
或匯入 IDE 專案時。
減少對 depset
的呼叫次數
在迴圈內呼叫 depset
通常是錯誤的做法。這可能會導致巢狀結構非常深的 depset,導致效能不佳。例如:
x = depset()
for i in inputs:
# Do not do that.
x = depset(transitive = [x, i.deps])
這段程式碼可以輕鬆替換。首先,收集傳遞依附元組合,並一次合併所有依附元組合:
transitive = []
for i in inputs:
transitive.append(i.deps)
x = depset(transitive = transitive)
但有時候,只要遵循這份清單理解即可,就能減少這個數量:
x = depset(transitive = [i.deps for i in inputs])
使用 ctx.actions.args() 指令列
建構指令列時,請使用 ctx.actions.args()。這樣一來,任何 depset 的擴充作業都會延後至執行階段。
除了速度明顯提升之外,這項做法還能減少規則的記憶體用量,有時甚至可減少 90% 以上。
以下提供幾個訣竅:
傳遞依附元件和清單做為引數,而不是自行壓平。
ctx.actions.args()
會為您展開這些項目。如果您需要對解碼器內容進行任何轉換,請查看 ctx.actions.args#add,確認是否有任何項目符合帳單。請勿透過連結的方式建構字串。最佳字串引數是常數,因為規則的所有執行個體會共用其記憶體。
如果指令列的 args 太長,您可以使用
ctx.actions.args#use_param_file
,將ctx.actions.args()
物件有條件或無條件地寫入參數檔案。這項作業會在執行動作時在幕後完成。如需明確控管參數檔案,可以使用ctx.actions.write
手動編寫。
範例:
def _impl(ctx):
...
args = ctx.actions.args()
file = ctx.declare_file(...)
files = depset(...)
# Bad, constructs a full string "--foo=<file path>" for each rule instance
args.add("--foo=" + file.path)
# Good, shares "--foo" among all rule instances, and defers file.path to later
# It will however pass ["--foo", <file path>] to the action command line,
# instead of ["--foo=<file_path>"]
args.add("--foo", file)
# Use format if you prefer ["--foo=<file path>"] to ["--foo", <file path>]
args.add(format="--foo=%s", value=file)
# Bad, makes a giant string of a whole depset
args.add(" ".join(["-I%s" % file.short_path for file in files])
# Good, only stores a reference to the depset
args.add_all(files, format_each="-I%s", map_each=_to_short_path)
# Function passed to map_each above
def _to_short_path(f):
return f.short_path
轉置動作輸入內容應為 depset
使用 ctx.actions.run 建構動作時,請記得 inputs
欄位會接受 depset。只要從依附元件收集輸入內容,就請使用這個方法。
inputs = depset(...)
ctx.actions.run(
inputs = inputs, # Do *not* turn inputs into a list
...
)
懸掛式
如果 Bazel 似乎處於無回應狀態,您可以按下 Ctrl-\ 鍵或傳送 SIGQUIT
信號 (kill -3 $(bazel info server_pid)
),在 $(bazel info output_base)/server/jvm.out
檔案中取得執行緒傾印。
由於在 Bazel 掛起時,您可能無法執行 bazel info
,因此 output_base
目錄通常是工作區目錄中 bazel-<workspace>
符號連結的父項。
效能分析
JSON 追蹤記錄設定檔非常實用,可讓您快速瞭解 Bazel 在叫用期間花費的時間。
--experimental_command_profile
標記可用來擷取各種類型的 Java Flight Recorder 設定檔 (CPU 時間、系統時間、記憶體配置和鎖定競爭)。
--starlark_cpu_profile
標記可用於寫入 pprof 設定檔,以便記錄所有 Starlark 執行緒的 CPU 使用率。
記憶體分析
Bazel 內建的記憶體分析器可協助您檢查規則的記憶體使用情況。如果發生問題,您可以轉儲堆積,找出造成問題的確切程式碼行。
啟用記憶體追蹤
您必須將這兩個啟動標記傳遞至每個 Bazel 叫用:
STARTUP_FLAGS=\
--host_jvm_args=-javaagent:<path to java-allocation-instrumenter-3.3.0.jar> \
--host_jvm_args=-DRULE_MEMORY_TRACKER=1
這些指令會在記憶體追蹤模式下啟動伺服器。即使您忘記了其中一個 Bazel 叫用作業,伺服器也會重新啟動,您必須重新開始。
使用記憶體追蹤器
舉例來說,請查看目標 foo
並瞭解其功能。如要只執行分析,而不執行建構執行階段,請新增 --nobuild
標記。
$ bazel $(STARTUP_FLAGS) build --nobuild //foo:foo
接著,查看整個 Bazel 例項會消耗多少記憶體:
$ bazel $(STARTUP_FLAGS) info used-heap-size-after-gc
> 2594MB
使用 bazel dump --rules
依規則類別細分:
$ bazel $(STARTUP_FLAGS) dump --rules
>
RULE COUNT ACTIONS BYTES EACH
genrule 33,762 33,801 291,538,824 8,635
config_setting 25,374 0 24,897,336 981
filegroup 25,369 25,369 97,496,272 3,843
cc_library 5,372 73,235 182,214,456 33,919
proto_library 4,140 110,409 186,776,864 45,115
android_library 2,621 36,921 218,504,848 83,366
java_library 2,371 12,459 38,841,000 16,381
_gen_source 719 2,157 9,195,312 12,789
_check_proto_library_deps 719 668 1,835,288 2,552
... (more output)
使用 bazel dump --skylark_memory
產生 pprof
檔案,查看記憶體的去向:
$ bazel $(STARTUP_FLAGS) dump --skylark_memory=$HOME/prof.gz
> Dumping Starlark heap to: /usr/local/google/home/$USER/prof.gz
使用 pprof
工具調查堆積。使用 pprof -flame $HOME/prof.gz
取得火焰圖是很好的起點。
請從 https://github.com/google/pprof 取得 pprof
。
取得熱門呼叫網站的文字傾印,並加上註解行:
$ pprof -text -lines $HOME/prof.gz
>
flat flat% sum% cum cum%
146.11MB 19.64% 19.64% 146.11MB 19.64% android_library <native>:-1
113.02MB 15.19% 34.83% 113.02MB 15.19% genrule <native>:-1
74.11MB 9.96% 44.80% 74.11MB 9.96% glob <native>:-1
55.98MB 7.53% 52.32% 55.98MB 7.53% filegroup <native>:-1
53.44MB 7.18% 59.51% 53.44MB 7.18% sh_test <native>:-1
26.55MB 3.57% 63.07% 26.55MB 3.57% _generate_foo_files /foo/tc/tc.bzl:491
26.01MB 3.50% 66.57% 26.01MB 3.50% _build_foo_impl /foo/build_test.bzl:78
22.01MB 2.96% 69.53% 22.01MB 2.96% _build_foo_impl /foo/build_test.bzl:73
... (more output)