永続ワーカー

問題を報告する ソースを表示 Nightly · 8.0 . 7.4 . 7.3 · 7.2 · 7.1 · 7.0 · 6.5

このページでは、永続ワーカーの使用方法、メリット、要件、ワーカーがサンドボックス化に与える影響について説明します。

永続ワーカーは、Bazel サーバーが開始する長時間実行プロセスです。実際のツール(通常はコンパイラ)のラッパーとして機能するか、ツール自体です。永続ワーカーのメリットを享受するには、ツールが連続したコンパイルをサポートしている必要があります。また、ラッパーは、ツールの API と後述のリクエスト/レスポンス形式を変換する必要があります。同じワーカーが、同じビルドで --persistent_worker フラグの有無にかかわらず呼び出されることがあります。このワーカーは、ツールを適切に起動して通信し、終了時にワーカーをシャットダウンする責任があります。各ワーカー インスタンスには、<outputBase>/bazel-workers の下の個別の作業ディレクトリが割り当てられます(ただし、chroot はされません)。

永続ワーカーを使用することは、起動のオーバーヘッドを減らし、より多くの JIT コンパイルを可能にし、アクション実行の抽象構文木などのキャッシュを有効にする実行戦略です。この戦略では、長時間実行プロセスに複数のリクエストを送信することで、これらの改善を実現します。

永続ワーカーは、Java、ScalaKotlin など、複数の言語で実装されています。

NodeJS ランタイムを使用するプログラムは、@bazel/worker ヘルパー ライブラリを使用してワーカー プロトコルを実装できます。

永続ワーカーを使用する

Bazel 0.27 以降では、ビルドの実行時にデフォルトで永続ワーカーが使用されますが、リモート実行が優先されます。永続ワーカーをサポートしていないアクションの場合、Bazel はアクションごとにツール インスタンスを開始します。永続ワーカーを使用するようにビルドを明示的に設定するには、該当するツールの worker 戦略を設定します。ベスト プラクティスとして、この例では worker 戦略へのフォールバックとして local を指定しています。

bazel build //my:target --strategy=Javac=worker,local

ローカル戦略ではなくワーカー戦略を使用すると、実装に応じてコンパイル速度が大幅に向上する場合があります。Java の場合、ビルドは 2 ~ 4 倍高速になります。増分コンパイルではさらに高速になることもあります。Bazel のコンパイルは、ワーカーを使用すると約 2.5 倍速くなります。詳細については、ワーカー数の選択をご覧ください。

ローカル ビルド環境と一致するリモート ビルド環境もある場合は、リモート実行とワーカー実行を競合させる試験運用版の動的戦略を使用できます。動的戦略を有効にするには、--experimental_spawn_scheduler フラグを渡します。この戦略ではワーカーが自動的に有効になるため、worker 戦略を指定する必要はありませんが、local または sandboxed をフォールバックとして使用できます。

ワーカー数の選択

メモニカあたりのデフォルトのワーカー インスタンス数は 4 ですが、worker_max_instances フラグで調整できます。使用可能な CPU を有効活用することと、JIT コンパイルとキャッシュヒットの量との間にはトレードオフがあります。ワーカーが増えると、JIT 以外のコードの実行とコールド キャッシュへのアクセスの起動コストが、より多くのターゲットで発生します。ビルドするターゲットが少ない場合、1 つのワーカーでコンパイル速度とリソース使用量の最適なトレードオフが得られる場合があります(問題 #8586 など)。worker_max_instances フラグは、メモニカとフラグセットあたりのワーカー インスタンスの最大数を設定します(後述)。混在システムでは、デフォルト値のままにすると、かなりのメモリを使用する可能性があります。増分ビルドの場合、複数のワーカー インスタンスのメリットはさらに小さくなります。

このグラフは、64 GB の RAM を搭載した 6 コア ハイパースレッドの Intel Xeon 3.5 GHz Linux ワークステーションでの Bazel(ターゲット //src:bazel)のゼロからのコンパイル時間を示しています。ワーカー構成ごとに 5 件のクリーンビルドが実行され、最後の 4 件の平均が使用されます。

クリーンビルドのパフォーマンス向上のグラフ

図 1. クリーンビルドのパフォーマンス向上のグラフ。

この構成では、2 つのワーカーが最も高速なコンパイルを実現しますが、1 つのワーカーと比較してわずか 14% の改善にしかなりません。メモリ使用量を抑えたい場合は、1 つのワーカーが適しています。

通常、増分コンパイルはさらに効果的です。クリーンビルドは比較的まれですが、コンパイル間で単一のファイルを変更することは、特にテスト駆動開発で一般的です。上記の例には、Java 以外のパッケージ化アクションも含まれているため、増分コンパイル時間に影響する可能性があります。

AbstractContainerizingSandboxedSpawn.java で内部文字列定数を変更した後に Java ソースのみ(//src/main/java/com/google/devtools/build/lib/bazel:BazelServer_deploy.jar)を再コンパイルすると、3 倍の速度向上(平均 20 回の増分ビルド、1 回のウォームアップ ビルドを破棄)が得られます。

増分ビルドのパフォーマンス向上のグラフ

図 2. 増分ビルドのパフォーマンス向上のグラフ。

速度の向上は、変更内容によって異なります。上記の状況で、よく使用される定数が変更されると、6 倍の高速化が測定されます。

永続ワーカーの変更

--worker_extra_flag フラグを渡して、ワーカーに起動フラグを指定できます。このフラグは、メモニカでキーが設定されます。たとえば、--worker_extra_flag=javac=--debug を渡すと、Javac のデバッグのみが有効になります。このフラグの使用ごとに設定できるワーカーフラグは 1 つだけです。また、1 つのメモニクスにのみ設定できます。ワーカーは、各メモニカだけでなく、起動フラグの違いごとに個別に作成されます。各メモニカと起動フラグは WorkerKey に結合され、WorkerKey ごとに最大 worker_max_instances 個のワーカーが作成されます。アクションの構成で設定フラグを指定する方法については、次のセクションをご覧ください。

--high_priority_workers フラグを使用して、通常の優先度のマクロよりも優先して実行するマクロを指定できます。これにより、常にクリティカル パスにあるアクションの優先順位付けに役立ちます。優先度の高いワーカーがリクエストを実行している場合、他のすべてのワーカーは実行されません。このフラグは複数回使用できます。

--worker_sandboxing フラグを渡すと、各ワーカー リクエストはすべての入力に個別のサンドボックス ディレクトリを使用します。サンドボックスの設定には、特に macOS で時間がかかりますが、正確性が保証されます。

--worker_quit_after_build フラグは主にデバッグとプロファイリングに役立ちます。このフラグを使用すると、ビルドが完了するとすべてのワーカーが強制的に終了します。--worker_verbose を渡して、ワーカーの処理内容に関する詳細な出力を取得することもできます。このフラグは WorkRequestverbosity フィールドに反映され、ワーカの実装も詳細にできます。

ワーカーはログを <outputBase>/bazel-workers ディレクトリ(/tmp/_bazel_larsrc/191013354bebe14fdddae77f2679c3ef/bazel-workers/worker-1-Javac.log など)に保存します。ファイル名には、ワーカー ID とメモニクスが含まれています。メモニカごとに複数の WorkerKey がある可能性があるため、特定のメモニカに worker_max_instances ログファイルが複数表示されることがあります。

Android ビルドについては、Android ビルドのパフォーマンス ページをご覧ください。

永続ワーカーの実装

ワーカーの作成方法の詳細については、永続ワーカーを作成するをご覧ください。

次の例は、JSON を使用するワーカーの Starlark 構成を示しています。

args_file = ctx.actions.declare_file(ctx.label.name + "_args_file")
ctx.actions.write(
    output = args_file,
    content = "\n".join(["-g", "-source", "1.5"] + ctx.files.srcs),
)
ctx.actions.run(
    mnemonic = "SomeCompiler",
    executable = "bin/some_compiler_wrapper",
    inputs = inputs,
    outputs = outputs,
    arguments = [ "-max_mem=4G",  "@%s" % args_file.path],
    execution_requirements = {
        "supports-workers" : "1", "requires-worker-protocol" : "json" }
)

この定義では、このアクションの最初の使用は、コマンドライン /bin/some_compiler -max_mem=4G --persistent_worker の実行から始まります。Foo.java をコンパイルするリクエストは次のようになります。

注: プロトコル バッファ仕様では「スネークケース」(request_id)が使用されますが、JSON プロトコルでは「キャメルケース」(requestId)が使用されます。このドキュメントでは、JSON の例ではキャメルケースを使用しますが、プロトコルに関係なくフィールドについて説明する場合はスネークケースを使用します。

{
  "arguments": [ "-g", "-source", "1.5", "Foo.java" ]
  "inputs": [
    { "path": "symlinkfarm/input1", "digest": "d49a..." },
    { "path": "symlinkfarm/input2", "digest": "093d..." },
  ],
}

ワーカーは、stdin で改行区切りの JSON 形式でこれを受け取ります(requires-worker-protocol が JSON に設定されているため)。ワーカーはアクションを実行し、JSON 形式の WorkResponse を stdout で Bazel に送信します。Bazel は、このレスポンスを解析し、手動で WorkResponse proto に変換します。JSON ではなくバイナリでエンコードされた protobuf を使用して関連するワーカーと通信するには、次のように requires-worker-protocolproto に設定します。

  execution_requirements = {
    "supports-workers" : "1" ,
    "requires-worker-protocol" : "proto"
  }

実行要件に requires-worker-protocol を含めない場合、Bazel はデフォルトでワーカー通信に protobuf を使用します。

Bazel は、メモニカと共有フラグから WorkerKey を導出します。この構成で max_mem パラメータを変更できる場合、使用される値ごとに個別のワーカーが生成されます。バリエーションを使いすぎると、メモリ消費量が増加する可能性があります。

現在、各ワーカーが一度に処理できるリクエストは 1 つのみです。試験運用版のマルチプレックス ワーカー機能を使用すると、基盤となるツールがマルチスレッドであり、ラッパーがこれを認識するように設定されている場合に、複数のスレッドを使用できます。

この GitHub リポジトリでは、Java と Python で記述されたワーカー ラッパーの例を確認できます。JavaScript または TypeScript を使用している場合は、@bazel/worker パッケージnodejs ワーカーの例が役に立ちます。

ワーカーがサンドボックス化に与える影響

worker 戦略を使用する場合、デフォルトでは local 戦略と同様に、アクションはサンドボックスで実行されません。--worker_sandboxing フラグを設定して、すべてのワーカーをサンドボックス内で実行し、ツールの各実行で、本来存在するはずの入力ファイルのみを参照するようにすることができます。それでも、キャッシュなどを通じて、リクエスト間で情報が内部的に漏洩する可能性があります。dynamic 戦略を使用するには、ワーカーをサンドボックス化する必要があります

ワーカーでコンパイラ キャッシュを正しく使用できるように、各入力ファイルとともにダイジェストが渡されます。したがって、コンパイラまたはラッパーは、ファイルを読み取ることなく入力がまだ有効かどうかを確認できます。

入力ダイジェストを使用して不要なキャッシュを防いでも、サンドボックス化されたワーカーは、ツールが以前のリクエストの影響を受けた他の内部状態を保持する可能性があるため、純粋なサンドボックスよりも厳格なサンドボックス化を提供しません。

マルチプレックス ワーカーをサンドボックス化できるのは、ワーカーの実装がサンドボックス化をサポートしている場合のみです。このサンドボックス化は、--experimental_worker_multiplex_sandboxing フラグで別途有効にする必要があります。詳しくは、設計ドキュメントをご覧ください)。

関連情報

永続ワーカーの詳細については、以下をご覧ください。