Kararlı Çalışanlar

7.3 · 7.2 · 7.1 · 7.0 · 6.5

Bu sayfada, kalıcı çalışanların nasıl kullanılacağı, avantajları, koşulları ve çalışanların korumalı alanı nasıl etkilediği ele alınmaktadır.

Kalıcı işleyici, Bazel sunucusu tarafından başlatılan ve gerçek araç (genellikle bir derleyici) etrafında sarmalayıcı olarak işlev gören veya aracı kendisi olan uzun süreli bir işlemdir. Kalıcı çalışanlardan yararlanmak için aracının bir dizi derleme yapmayı desteklemesi ve sarmalayıcının aracının API'si ile aşağıda açıklanan istek/yanıt biçimi arasında çeviri yapması gerekir. Aynı işçi, aynı derlemede --persistent_worker işaretiyle ve işaretsiz olarak çağrılabilir. İşçi, aracı uygun şekilde başlatmaktan ve araçla konuşmaktan, ayrıca çıkışta işçileri kapatmaktan sorumludur. Her çalışan örneğine <outputBase>/bazel-workers altında ayrı bir çalışma dizini atanır (ancak bu dizin için kök dizini ayarlanmaz).

Kalıcı çalışanları kullanmak, başlatma ek yükünü azaltan, daha fazla JIT derlemesine olanak tanıyan ve işlem yürütmede örnek için soyut söz dizimi ağaçlarının önbelleğe alınmasını sağlayan bir yürütme stratejisidir. Bu strateji, uzun süren bir işleme birden fazla istek göndererek bu iyileştirmeleri sağlar.

Kalıcı çalışanlar Java, Scala, Kotlin ve daha birçok dilde uygulanır.

NodeJS çalışma zamanı kullanan programlar, işleyici protokolünü uygulamak için @bazel/worker yardımcı kitaplığını kullanabilir.

Kalıcı çalışanları kullanma

Bazel 0.27 ve sonraki sürümler, derlemeleri çalıştırırken varsayılan olarak kalıcı çalışanları kullanır ancak uzaktan çalıştırma önceliklidir. Kalıcı çalışanları desteklemeyen işlemler için Bazel, her işlem için bir araç örneği başlatır. Geçerli araç anımsatıcıları için worker stratejisini ayarlayarak derlemenizi kalıcı çalışanları kullanacak şekilde açıkça ayarlayabilirsiniz. En iyi uygulama olarak bu örnekte, worker stratejisine yedek olarak local belirtilmiştir:

bazel build //my:target --strategy=Javac=worker,local

Yerel strateji yerine işçi stratejisinin kullanılması, uygulamaya bağlı olarak derleme hızını önemli ölçüde artırabilir. Java için derlemeler 2-4 kat daha hızlı olabilir. Artımlı derlemede bu süre bazen daha da uzayabilir. Bazel derlemesi, işçiler kullanılarak yaklaşık 2,5 kat daha hızlıdır. Daha fazla bilgi için "Çalışanların sayısını seçme" bölümüne bakın.

Yerel derleme ortamınızla eşleşen bir uzaktan derleme ortamınız varsa uzaktan yürütme ve çalışan yürütme yöntemini kullanan deneysel dinamik stratejisini kullanabilirsiniz. Dinamik stratejiyi etkinleştirmek için --experimental_spawn_scheduler bayrağını iletin. Bu strateji, çalışanları otomatik olarak etkinleştirir. Bu nedenle, worker stratejisini belirtmenize gerek yoktur ancak local veya sandboxed stratejisini yedek olarak kullanmaya devam edebilirsiniz.

Çalışan sayısını seçme

Anımsatıcı başına varsayılan çalışan örneği sayısı 4'tür ancak worker_max_instances işaretiyle ayarlanabilir. Mevcut CPU'lardan iyi bir şekilde yararlanmak ve JIT derlemesi ile önbellek isabetlerinin miktarı arasında bir denge vardır. Daha fazla çalışan olduğunda, daha fazla hedef, JIT'siz kod çalıştırma ve soğuk önbellekleri kullanmayla ilgili başlangıç maliyetlerini karşılar. Oluşturulacak az sayıda hedefiniz varsa derleme hızı ile kaynak kullanımı arasındaki en iyi dengeyi tek bir çalışan verebilir (örneğin, 8586 numaralı soruna bakın). worker_max_instances işareti, her mnemoni ve işaret grubu için maksimum işleyici örneği sayısını belirler (aşağıya bakın). Bu nedenle, karma bir sistemde varsayılan değeri kullanırsanız çok fazla bellek kullanabilirsiniz. Artımlı derlemelerde birden çok çalışan örneğinin avantajı daha da azdır.

Bu grafikte, 64 GB RAM'e sahip 6 çekirdekli hiper iş parçacıklı Intel Xeon 3,5 GHz Linux iş istasyonunda Bazel'in (hedef //src:bazel) sıfırdan derleme süreleri gösterilmektedir. Her çalışan yapılandırması için beş temiz derleme çalıştırılır ve son dört derlemenin ortalaması alınır.

Temiz derlemelerde performans iyileştirmelerini gösteren grafik

Şekil 1. Temiz derlemelerin performans iyileştirmelerini gösteren grafik.

Bu yapılandırmada, iki çalışan en hızlı derlemeyi sağlar ancak tek bir çalışana kıyasla yalnızca %14 oranında iyileşme sağlanır. Daha az bellek kullanmak istiyorsanız bir işleyici iyi bir seçenektir.

Artımlı derleme genellikle daha da fazla fayda sağlar. Temiz derlemeler nispeten nadirdir ancak derlemeler arasında tek bir dosyanın değiştirilmesi, özellikle test odaklı geliştirmede yaygındır. Yukarıdaki örnekte artımlı derleme süresini gölgede bırakabilecek bazı Java dışı paketleme işlemleri de vardır.

AbstractContainerizingSandboxedSpawn.java dosyasında dahili bir dize sabitinin değiştirilmesinden sonra yalnızca Java kaynaklarını yeniden derlemek (//src/main/java/com/google/devtools/build/lib/bazel:BazelServer_deploy.jar), 3 kat hızlanma sağlar (bir ısıtma derlemesi atlanarak ortalama 20 artımlı derleme):

Artımlı derlemelerdeki performans iyileştirmelerinin grafiği

Şekil 2. Artımlı derlemelerdeki performans iyileştirmelerini gösteren grafik.

Hızlanma, yapılan değişikliğe bağlıdır. Yukarıdaki durumda, yaygın olarak kullanılan bir sabit değiştiğinde 6 kat hızlanma ölçülür.

Kalıcı çalışanları değiştirme

Çalışanlara başlangıç işaretlerini belirtmek için --worker_extra_flag işaretini iletebilirsiniz. Örneğin, --worker_extra_flag=javac=--debug parametresini iletmek yalnızca Javac için hata ayıklamayı etkinleştirir. Bu işaretin her kullanımı için yalnızca bir işçi işareti ve yalnızca bir anımsatıcı ayarlanabilir. Çalışanlar yalnızca her bir hatırlatıcı için ayrı ayrı değil, aynı zamanda başlangıç işaretlerindeki varyasyonlar için de ayrı ayrı oluşturulur. Her bir kısaltma ve başlangıç işareti kombinasyonu bir WorkerKey olarak birleştirilir ve her WorkerKey için en fazla worker_max_instances çalışan oluşturulabilir. İşlem yapılandırmasının, kurulum işaretlerini nasıl belirtebileceği hakkında bilgi edinmek için sonraki bölüme bakın.

Normal öncelikli anımsatıcılara tercih edilerek çalıştırılması gereken bir anımsatıcı belirtmek için --high_priority_workers işaretini kullanabilirsiniz. Bu, her zaman kritik yolda olan işlemlere öncelik vermenize yardımcı olabilir. İstekleri yürüten iki veya daha fazla yüksek öncelikli çalışan varsa diğer tüm çalışanların çalışması engellenir. Bu işaret birden çok kez kullanılabilir.

--worker_sandboxing işaretçisi iletildiği takdirde her çalışan isteği, tüm girişleri için ayrı bir korumalı alan dizini kullanır. Korumalı alan oluşturmak, özellikle macOS'te biraz daha zaman alır ancak daha doğru sonuçlar elde etmenizi sağlar.

--worker_quit_after_build işareti, çoğunlukla hata ayıklama ve profil oluşturma için yararlıdır. Bu işaret, bir derleme tamamlandığında tüm iş parçacıklarını çıkmaya zorlar. Ayrıca, çalışanların ne yaptığıyla ilgili daha fazla sonuç almak için --worker_verbose parametresini de iletebilirsiniz. Bu işaret, WorkRequest dilindeki verbosity alanına yansıtılarak çalışan uygulamalarının daha ayrıntılı olmasına da olanak tanır.

Çalışanlar günlüklerini <outputBase>/bazel-workers dizininde (ör. /tmp/_bazel_larsrc/191013354bebe14fdddae77f2679c3ef/bazel-workers/worker-1-Javac.log) depolar. Dosya adı, çalışan kimliğini ve anımsatıcıyı içerir. Anımsatıcı başına birden fazla WorkerKey olabileceğinden belirli bir anımsatıcı için worker_max_instances taneden fazla günlük dosyası görebilirsiniz.

Android derlemeleri için Android Derleme Performansı sayfasında ayrıntıları inceleyin.

Kalıcı çalışanları uygulama

Çalışan oluşturma hakkında daha fazla bilgi için kalıcı çalışan oluşturma sayfasına bakın.

Bu örnekte, JSON kullanan bir işleyici için Starlark yapılandırması gösterilmektedir:

args_file = ctx.actions.declare_file(ctx.label.name + "_args_file")
ctx.actions.write(
    output = args_file,
    content = "\n".join(["-g", "-source", "1.5"] + ctx.files.srcs),
)
ctx.actions.run(
    mnemonic = "SomeCompiler",
    executable = "bin/some_compiler_wrapper",
    inputs = inputs,
    outputs = outputs,
    arguments = [ "-max_mem=4G",  "@%s" % args_file.path],
    execution_requirements = {
        "supports-workers" : "1", "requires-worker-protocol" : "json" }
)

Bu tanım doğrultusunda, bu işlemin ilk kullanımı /bin/some_compiler -max_mem=4G --persistent_worker komut satırının yürütülmesiyle başlar. Foo.java derleme isteği şu şekilde görünür:

NOT: Protokol arabelleği spesifikasyonunda "alt tireli" (request_id) kullanılırken JSON protokolünde "büyük/küçük harfli" (requestId) kullanılır. Bu dokümanda, JSON örneklerinde büyük/küçük harfli, protokolden bağımsız olarak alandan bahsederken ise alt tireli kullanılır.

{
  "arguments": [ "-g", "-source", "1.5", "Foo.java" ]
  "inputs": [
    { "path": "symlinkfarm/input1", "digest": "d49a..." },
    { "path": "symlinkfarm/input2", "digest": "093d..." },
  ],
}

Çalışan, bunu stdin üzerinde yeni satırla sınırlandırılmış JSON biçiminde alır (requires-worker-protocol JSON olarak ayarlandığından). İşleyici daha sonra işlemi gerçekleştirir ve stdout'sinde Bazel'e JSON biçiminde bir WorkResponse gönderir. Daha sonra Bazel bu yanıtı ayrıştırır ve manuel olarak WorkResponse protosuna dönüştürür. JSON yerine ikili kodlu protobuf kullanarak ilişkili işleyiciyle iletişim kurmak için requires-worker-protocol, aşağıdaki gibi proto olarak ayarlanır:

  execution_requirements = {
    "supports-workers" : "1" ,
    "requires-worker-protocol" : "proto"
  }

Yürütme şartlarına requires-worker-protocol öğesini dahil etmezseniz Bazel varsayılan olarak çalışan iletişimini protobuf kullanacak şekilde ayarlar.

Bazel, WorkerKey değerini kısaltmadan ve paylaşılan işaretlerden türetmektedir. Bu nedenle, bu yapılandırma max_mem parametresinin değiştirilmesine izin veriyorsa kullanılan her değer için ayrı bir işleyici oluşturulur. Çok fazla varyasyon kullanılırsa bu durum aşırı bellek tüketimine yol açabilir.

Her işleyici şu anda yalnızca tek bir isteği işleyebilir. Deneysel çoklu işleyici özelliği, temel araç çoklu iş parçacıklıysa ve sarmalayıcı bunu anlayacak şekilde ayarlandıysa birden fazla iş parçacığı kullanılmasına olanak tanır.

Bu GitHub deposunda, Java ve Python'da yazılmış örnek işleyici sarmalayıcılarını görebilirsiniz. JavaScript veya TypeScript ile çalışıyorsanız @bazel/worker paketi ve nodejs worker örneği faydalı olabilir.

İşçiler korumalı alanı nasıl etkiler?

Varsayılan olarak worker stratejisi kullanıldığında işlem, local stratejisine benzer şekilde bir korumalı alanda çalıştırılmaz. --worker_sandboxing işaretini, tüm işleyicileri korumalı alan içinde çalıştıracak şekilde ayarlayarak aracın her çalıştırmasında yalnızca olması gereken giriş dosyalarının gösterilmesini sağlayabilirsiniz. Araç, istekler arasında dahili olarak (ör. önbelleğe alma yoluyla) bilgi sızdırmaya devam edebilir. dynamic stratejisini kullanmak için çalışanların korumalı alana yerleştirilmesi gerekir.

Derleyici önbelleklerinin işleyicilerle doğru şekilde kullanılmasına izin vermek için her giriş dosyasıyla birlikte bir özet gönderilir. Böylece derleyici veya sarmalayıcı, dosyayı okumak zorunda kalmadan girişin hâlâ geçerli olup olmadığını kontrol edebilir.

İstenmeyen önbelleğe almaya karşı koruma sağlamak için giriş özetlerini kullanırken bile, korumalı alan çalışanları, önceki isteklerden etkilenen diğer dahili durumları saklayabileceğinden, saf korumalı alana kıyasla daha az katı korumalı alan sunar.

Çoklu çalışanlar yalnızca çalışan uygulaması bunu destekliyorsa korumalı alana alınabilir ve bu korumalı alan, --experimental_worker_multiplex_sandboxing işaretiyle ayrı olarak etkinleştirilmelidir. Daha fazla ayrıntı için tasarım dokümanındaki bilgileri inceleyin.

Daha fazla bilgi

Kalıcı çalışanlar hakkında daha fazla bilgi için aşağıdakilere bakın: