优化性能

报告问题 查看源代码 每夜 build · 7.4 . 7.3 · 7.2 · 7.1 · 7.0 · 6.5

编写规则时,最常见的性能误区是遍历或复制从依赖项累积的数据。在整个 build 中进行汇总时,这些操作很容易需要 O(N^2) 的时间或空间。为避免出现这种情况,了解如何有效使用 depset 至关重要。

这可能很难做到,因此 Bazel 还提供了内存性能分析器,可帮助您找出可能出错的地方。请注意:编写效率低下的规则的代价可能在该规则被广泛使用之前并不明显。

使用 depset

每当您要汇总规则依赖项中的信息时,都应使用 depsets。请仅使用普通列表或字典来发布当前规则本地的信息。

依赖项集将信息表示为嵌套图,以便共享。

请考虑以下图表:

C -> B -> A
D ---^

每个节点发布一个字符串。使用 depsets 时,数据如下所示:

a = depset(direct=['a'])
b = depset(direct=['b'], transitive=[a])
c = depset(direct=['c'], transitive=[b])
d = depset(direct=['d'], transitive=[b])

请注意,每个项目只会被提及一次。使用列表,您可以得到以下结果:

a = ['a']
b = ['b', 'a']
c = ['c', 'b', 'a']
d = ['d', 'b', 'a']

请注意,在本例中,'a' 被提及了四次!如果图表较大,这个问题只会变得更糟。

下面的示例展示了一个规则实现,该实现正确使用了 depset 来发布传递信息。请注意,您可以根据需要使用列表发布规则级信息,因为这不是 O(N^2)。

MyProvider = provider()

def _impl(ctx):
  my_things = ctx.attr.things
  all_things = depset(
      direct=my_things,
      transitive=[dep[MyProvider].all_things for dep in ctx.attr.deps]
  )
  ...
  return [MyProvider(
    my_things=my_things,  # OK, a flat list of rule-local things only
    all_things=all_things,  # OK, a depset containing dependencies
  )]

如需了解详情,请参阅依赖项集概览页面。

避免调用 depset.to_list()

您可以使用 to_list() 将 depset 强制转换为扁平列表,但这样做通常会导致 O(N^2) 开销。除调试目的外,请尽可能避免对依赖项集进行任何扁平化处理。

一个常见的误解是,如果您仅在顶级目标(例如 <xx>_binary 规则)上展平 depset,则可以随意展平 depset,因为这样做不会在 build 图的每个级别累积费用。但是,如果您构建一组具有重叠依赖项的目标,则仍然是 O(N^2)。在构建测试 //foo/tests/... 或导入 IDE 项目时,就会发生这种情况。

减少对 depset 的调用次数

在循环中调用 depset 通常是错误做法。这可能会导致嵌套极深的 depset,其性能较差。例如:

x = depset()
for i in inputs:
    # Do not do that.
    x = depset(transitive = [x, i.deps])

此代码可以轻松替换。首先,收集传递依赖项集并一次性合并它们:

transitive = []

for i in inputs:
    transitive.append(i.deps)

x = depset(transitive = transitive)

有时可以使用列表理解来减少这一限制:

x = depset(transitive = [i.deps for i in inputs])

对命令行使用 ctx.actions.args()

构建命令行时,您应使用 ctx.actions.args()。这会将任何 depset 的展开推迟到执行阶段。

除了速度更快之外,这还会减少规则的内存消耗,有时可减少 90% 或更多。

以下是一些技巧:

  • 直接将 depset 和列表作为参数传递,而不是自行展平它们。ctx.actions.args() 会为您展开这些内容。 如果您需要对 depset 内容进行任何转换,请查看 ctx.actions.args#add,看看是否有任何项目符合该费用。

  • 您是否将 File#path 作为参数传递?无需。任何文件都会自动转换为其路径,并推迟到展开时。

  • 避免通过串联字符串来构造字符串。 最佳字符串参数是常量,因为其内存将在规则的所有实例之间共享。

  • 如果参数对于命令行而言太长,可以使用 ctx.actions.args#use_param_file 有条件或无条件地将 ctx.actions.args() 对象写入参数文件。这是在执行操作时在后台完成的。如果您需要明确控制 params 文件,可以使用 ctx.actions.write 手动编写该文件。

示例:

def _impl(ctx):
  ...
  args = ctx.actions.args()
  file = ctx.declare_file(...)
  files = depset(...)

  # Bad, constructs a full string "--foo=<file path>" for each rule instance
  args.add("--foo=" + file.path)

  # Good, shares "--foo" among all rule instances, and defers file.path to later
  # It will however pass ["--foo", <file path>] to the action command line,
  # instead of ["--foo=<file_path>"]
  args.add("--foo", file)

  # Use format if you prefer ["--foo=<file path>"] to ["--foo", <file path>]
  args.add(format="--foo=%s", value=file)

  # Bad, makes a giant string of a whole depset
  args.add(" ".join(["-I%s" % file.short_path for file in files])

  # Good, only stores a reference to the depset
  args.add_all(files, format_each="-I%s", map_each=_to_short_path)

# Function passed to map_each above
def _to_short_path(f):
  return f.short_path

传递操作输入应为 depset

使用 ctx.actions.run 构建操作时,请记得 inputs 字段接受 Depset。每当从依赖项传递地收集输入时,请使用此方法。

inputs = depset(...)
ctx.actions.run(
  inputs = inputs,  # Do *not* turn inputs into a list
  ...
)

悬挂

如果 Bazel 挂起,您可以点击 Ctrl-\ 或向 Bazel 发送 SIGQUIT 信号 (kill -3 $(bazel info server_pid)),以获取 $(bazel info output_base)/server/jvm.out 文件中的线程转储。

由于如果 bazel 挂起,您可能无法运行 bazel info,因此 output_base 目录通常是工作区目录中 bazel-<workspace> 符号链接的父目录。

性能剖析

Bazel 默认会将 JSON 配置文件写入输出基准中的 command.profile.gz。您可以使用 --profile 标志配置位置,例如 --profile=/tmp/profile.gz。以 .gz 结尾的位置信息会使用 GZIP 进行压缩。

如需查看结果,请在 Chrome 浏览器标签页中打开 chrome://tracing,点击“加载”,然后选择(可能已压缩)配置文件。如需查看更详细的结果,请点击左下角的框。

您可以使用以下键盘控件进行导航:

  • 1 进入“选择”模式。在此模式下,您可以选择特定复选框来检查事件详细信息(请参见左下角)。 选择多个活动可获取摘要和汇总统计信息。
  • 2 即可进入“平移”模式。然后拖动鼠标移动视图。您还可以使用 a/d 向左/向右移动。
  • 3 即可进入“缩放”模式。然后拖动鼠标进行缩放。您还可以使用 w/s 放大/缩小。
  • 4 进入“计时”模式,在该模式下,您可以测量两个事件之间的距离。
  • ? 即可了解所有控件。

资料信息

配置文件示例:

示例配置文件

图 1. 配置文件示例。

其中有一些特殊行:

  • action counters:显示正在进行的并发操作数量。点击该图标即可查看实际值。在干净 build 中,应不高于 --jobs 的值。
  • cpu counters:在构建的每一秒内,显示 Bazel 使用的 CPU 量(值为 1 表示一个核心处于 100% 繁忙状态)。
  • Critical Path:针对关键路径上的每个操作显示一个块。
  • grpc-command-1:Bazel 的主线程。有助于大致了解 Bazel 执行的操作,例如“Launch Bazel”“assessTargetPatterns”和“runAnalysisPhase”。
  • Service Thread:显示次要和主要垃圾回收 (GC) 暂停。

其他行代表 Bazel 线程,并显示该线程上的所有事件。

常见性能问题

分析性能配置文件时,请查找以下内容:

  • 分析阶段 (runAnalysisPhase) 的速度比预期慢,尤其是在增量 build 上。这可能表明规则实现不当,例如会扁平化 depset。如果目标数量过多、宏过于复杂或使用了递归的正则表达式,软件包加载速度可能会变慢。
  • 个别操作运行缓慢,尤其是关键路径上的操作。您可以将大型操作拆分为多个较小的操作,也可以减少(传递)依赖项集以加快操作速度。此外,请检查非 PROCESS_TIME 是否异常偏高(例如 REMOTE_SETUPFETCH)。
  • 瓶颈,即少量线程处于忙碌状态,而所有其他线程处于空闲状态 / 等待结果(请参阅上方屏幕截图中的大约 15-30 秒)。若要对此进行优化,很可能需要修改规则实现或 Bazel 本身,以引入更多并行性。如果 GC 次数异常多,也可能会发生这种情况。

配置文件格式

顶级对象包含元数据 (otherData) 和实际跟踪数据 (traceEvents)。元数据包含额外的信息,例如调用 ID 和 Bazel 调用的日期。

示例:

{
  "otherData": {
    "build_id": "101bff9a-7243-4c1a-8503-9dc6ae4c3b05",
    "date": "Tue Jun 16 08:30:21 CEST 2020",
    "output_base": "/usr/local/google/_bazel_johndoe/573d4be77eaa72b91a3dfaa497bf8cd0"
  },
  "traceEvents": [
    {"name":"thread_name","ph":"M","pid":1,"tid":0,"args":{"name":"Critical Path"}},
    {"cat":"build phase marker","name":"Launch Bazel","ph":"X","ts":-1824000,"dur":1824000,"pid":1,"tid":60},
    ...
    {"cat":"general information","name":"NoSpawnCacheModule.beforeCommand","ph":"X","ts":116461,"dur":419,"pid":1,"tid":60},
    ...
    {"cat":"package creation","name":"src","ph":"X","ts":279844,"dur":15479,"pid":1,"tid":838},
    ...
    {"name":"thread_name","ph":"M","pid":1,"tid":11,"args":{"name":"Service Thread"}},
    {"cat":"gc notification","name":"minor GC","ph":"X","ts":334626,"dur":13000,"pid":1,"tid":11},

    ...
    {"cat":"action processing","name":"Compiling third_party/grpc/src/core/lib/transport/status_conversion.cc","ph":"X","ts":12630845,"dur":136644,"pid":1,"tid":1546}
 ]
}

轨迹事件中的时间戳 (ts) 和时长 (dur) 以微秒为单位。类别 (cat) 是 ProfilerTask 的枚举值之一。请注意,如果某些事件非常短且彼此相近,系统会将它们合并在一起;如果您想阻止事件合并,请传递 --noslim_json_profile

另请参阅 Chrome 轨迹事件格式规范

analyze-profile

此性能分析方法包含两个步骤,首先,您必须使用 --profile 标志执行构建/测试,例如,

$ bazel build --profile=/tmp/prof //path/to:target

生成的文件(在本例中为 /tmp/prof)是二进制文件,可以通过 analyze-profile 命令进行后处理和分析:

$ bazel analyze-profile /tmp/prof

默认情况下,它会输出指定配置数据文件的摘要分析信息。其中包括每个构建阶段不同任务类型的累计统计信息,以及对关键路径的分析。

默认输出的第一个部分概要介绍了在不同构建阶段所花费的时间:

INFO: Profile created on Tue Jun 16 08:59:40 CEST 2020, build ID: 0589419c-738b-4676-a374-18f7bbc7ac23, output base: /home/johndoe/.cache/bazel/_bazel_johndoe/d8eb7a85967b22409442664d380222c0

=== PHASE SUMMARY INFORMATION ===

Total launch phase time         1.070 s   12.95%
Total init phase time           0.299 s    3.62%
Total loading phase time        0.878 s   10.64%
Total analysis phase time       1.319 s   15.98%
Total preparation phase time    0.047 s    0.57%
Total execution phase time      4.629 s   56.05%
Total finish phase time         0.014 s    0.18%
------------------------------------------------
Total run time                  8.260 s  100.00%

Critical path (4.245 s):
       Time Percentage   Description
    8.85 ms    0.21%   _Ccompiler_Udeps for @local_config_cc// compiler_deps
    3.839 s   90.44%   action 'Compiling external/com_google_protobuf/src/google/protobuf/compiler/php/php_generator.cc [for host]'
     270 ms    6.36%   action 'Linking external/com_google_protobuf/protoc [for host]'
    0.25 ms    0.01%   runfiles for @com_google_protobuf// protoc
     126 ms    2.97%   action 'ProtoCompile external/com_google_protobuf/python/google/protobuf/compiler/plugin_pb2.py'
    0.96 ms    0.02%   runfiles for //tools/aquery_differ aquery_differ

内存性能分析

Bazel 附带内置内存分析器,可帮助您检查规则的内存用量。如果出现问题,您可以转储堆以找到导致问题的确切代码行。

启用内存跟踪

您必须将以下两个启动标志传递给每次 Bazel 调用:

  STARTUP_FLAGS=\
  --host_jvm_args=-javaagent:$(BAZEL)/third_party/allocation_instrumenter/java-allocation-instrumenter-3.3.0.jar \
  --host_jvm_args=-DRULE_MEMORY_TRACKER=1

这些操作会以内存跟踪模式启动服务器。如果您在调用 Bazel 时忘记了这些信息,即使只忘记一次,服务器也会重启,并且您将不得不从头开始。

使用内存跟踪器

例如,查看目标 foo 及其用途。如需仅运行分析而不运行构建执行阶段,请添加 --nobuild 标志。

$ bazel $(STARTUP_FLAGS) build --nobuild //foo:foo

接下来,查看整个 Bazel 实例的占用内存量:

$ bazel $(STARTUP_FLAGS) info used-heap-size-after-gc
> 2594MB

使用 bazel dump --rules 按规则类别进行细分:

$ bazel $(STARTUP_FLAGS) dump --rules
>

RULE                                 COUNT     ACTIONS          BYTES         EACH
genrule                             33,762      33,801    291,538,824        8,635
config_setting                      25,374           0     24,897,336          981
filegroup                           25,369      25,369     97,496,272        3,843
cc_library                           5,372      73,235    182,214,456       33,919
proto_library                        4,140     110,409    186,776,864       45,115
android_library                      2,621      36,921    218,504,848       83,366
java_library                         2,371      12,459     38,841,000       16,381
_gen_source                            719       2,157      9,195,312       12,789
_check_proto_library_deps              719         668      1,835,288        2,552
... (more output)

使用 bazel dump --skylark_memory 生成 pprof 文件,了解内存的去向:

$ bazel $(STARTUP_FLAGS) dump --skylark_memory=$HOME/prof.gz
> Dumping Starlark heap to: /usr/local/google/home/$USER/prof.gz

使用 pprof 工具调查堆。建议您先使用 pprof -flame $HOME/prof.gz 获取火焰图。

https://github.com/google/pprof 获取 pprof

获取热门调用站点的文字转储,并带有行注释:

$ pprof -text -lines $HOME/prof.gz
>
      flat  flat%   sum%        cum   cum%
  146.11MB 19.64% 19.64%   146.11MB 19.64%  android_library <native>:-1
  113.02MB 15.19% 34.83%   113.02MB 15.19%  genrule <native>:-1
   74.11MB  9.96% 44.80%    74.11MB  9.96%  glob <native>:-1
   55.98MB  7.53% 52.32%    55.98MB  7.53%  filegroup <native>:-1
   53.44MB  7.18% 59.51%    53.44MB  7.18%  sh_test <native>:-1
   26.55MB  3.57% 63.07%    26.55MB  3.57%  _generate_foo_files /foo/tc/tc.bzl:491
   26.01MB  3.50% 66.57%    26.01MB  3.50%  _build_foo_impl /foo/build_test.bzl:78
   22.01MB  2.96% 69.53%    22.01MB  2.96%  _build_foo_impl /foo/build_test.bzl:73
   ... (more output)