หน้านี้กล่าวถึงประโยชน์และการใช้งานพื้นฐานของการกำหนดค่า Starlark ซึ่งเป็น API ของ Bazel สำหรับการปรับแต่งวิธีสร้างโปรเจ็กต์ ซึ่งรวมถึงวิธีกำหนดการตั้งค่าการสร้างและแสดงตัวอย่าง
ซึ่งช่วยให้คุณทำสิ่งต่อไปนี้ได้
- กำหนด Flag ที่กำหนดเองสำหรับโปรเจ็กต์ ซึ่งทำให้ไม่จำเป็นต้องใช้
--define
- เขียน
การเปลี่ยน เพื่อกำหนดค่า Dep ในการกำหนดค่า
ที่แตกต่างจากระดับบนสุด
(เช่น
--compilation_mode=opt
หรือ--cpu=arm
) - กำหนดค่าเริ่มต้นที่ดีขึ้นไว้ในกฎ (เช่น บิลด์
//my:android_app
โดยอัตโนมัติด้วย SDK ที่ระบุ)
และอื่นๆ ทั้งหมดจากไฟล์ .bzl (ไม่ต้องใช้รุ่น Bazel) ดูตัวอย่างใน bazelbuild/examples
การตั้งค่าบิลด์ที่ผู้ใช้กำหนด
การตั้งค่าบิลด์คือข้อมูลการกําหนดค่าเพียงรายการเดียว ให้คิดว่าการกําหนดค่าคือแมปคีย์/ค่า การตั้งค่า --cpu=ppc
และ --copt="-DFoo"
จะสร้างการกำหนดค่าที่มีลักษณะดังนี้
{cpu: ppc, copt: "-DFoo"}
โดยแต่ละรายการคือการตั้งค่าบิลด์
Flag แบบดั้งเดิม เช่น cpu
และ copt
คือการตั้งค่าแบบเนทีฟ ซึ่งมีการกําหนดคีย์และตั้งค่าภายในโค้ด Java ของ Bazel เอง
ผู้ใช้ Bazel จะอ่านและเขียนได้ผ่านบรรทัดคำสั่งและ API อื่นๆ ที่ดูแลรักษาแบบเนทีฟเท่านั้น การเปลี่ยน Flag เนทีฟและ API ที่แสดง Flag ดังกล่าวต้องใช้รุ่น Bazel การตั้งค่าบิลด์ที่ผู้ใช้กำหนดจะกำหนดไว้ในไฟล์ .bzl
(จึงไม่จำเป็นต้องมีรุ่น Bazel เพื่อบันทึกการเปลี่ยนแปลง) นอกจากนี้ยังตั้งค่าผ่านบรรทัดคำสั่งได้ด้วย (หากกำหนดเป็น flags
โปรดดูข้อมูลเพิ่มเติมด้านล่าง) หรือจะตั้งค่าผ่านทรานซิชันที่ผู้ใช้กำหนดก็ได้
การกำหนดการตั้งค่าบิลด์
พารามิเตอร์ build_setting
rule()
การตั้งค่าบิลด์เป็นกฎแบบเดียวกับกฎอื่นๆ และแยกความแตกต่างโดยใช้แอตทริบิวต์ build_setting
ของฟังก์ชัน Starlark rule()
# example/buildsettings/build_settings.bzl
string_flag = rule(
implementation = _impl,
build_setting = config.string(flag = True)
)
แอตทริบิวต์ build_setting
ใช้ฟังก์ชันที่ระบุประเภทของการตั้งค่าบิลด์ ประเภทนี้จํากัดไว้ที่ชุดประเภท Starlark พื้นฐาน เช่น bool
และ string
ดูรายละเอียดได้ในเอกสารประกอบของconfig
ข้อบังคับ คุณจะพิมพ์แบบซับซ้อนยิ่งขึ้น
ได้ในฟังก์ชันการใช้งานของกฎ ดูข้อมูลเพิ่มเติมด้านล่าง
ฟังก์ชันของโมดูล config
จะใช้พารามิเตอร์บูลีน flag
ที่ไม่บังคับ ซึ่งตั้งค่าเป็นเท็จโดยค่าเริ่มต้น หากตั้งค่า flag
เป็น "จริง" ผู้ใช้จะตั้งค่าการสร้างในบรรทัดคำสั่งได้ รวมถึงผู้เขียนกฎจะตั้งค่าภายในได้ผ่านค่าเริ่มต้นและการเปลี่ยน
ผู้ใช้ไม่ควรตั้งค่าได้ทั้งหมด ตัวอย่างเช่น หากคุณเป็นผู้เขียนกฎและมีโหมดแก้ไขข้อบกพร่องที่ต้องการเปิดภายในกฎทดสอบ คุณไม่ต้องการให้ผู้ใช้เปิดใช้ฟีเจอร์ดังกล่าวภายในกฎอื่นๆ ที่ไม่ใช่กฎทดสอบ
การใช้ ctx.build_setting_value
กฎการตั้งค่าบิลด์มีฟังก์ชันการใช้งานเช่นเดียวกับกฎทั้งหมด
คุณสามารถเข้าถึงค่าประเภท Starlark พื้นฐานของการตั้งค่าบิลด์ผ่านเมธอด ctx.build_setting_value
วิธีนี้ใช้ได้เฉพาะกับออบเจ็กต์ ctx
ของกฎการตั้งค่าบิลด์ วิธีการใช้งานเหล่านี้อาจส่งต่อค่าการตั้งค่าบิลด์โดยตรง หรือดำเนินการเพิ่มเติมให้กับค่าดังกล่าว เช่น การตรวจสอบประเภทหรือการสร้างโครงสร้างที่ซับซ้อนขึ้น วิธีใช้การตั้งค่าการสร้างประเภท enum
มีดังนี้
# example/buildsettings/build_settings.bzl
TemperatureProvider = provider(fields = ['type'])
temperatures = ["HOT", "LUKEWARM", "ICED"]
def _impl(ctx):
raw_temperature = ctx.build_setting_value
if raw_temperature not in temperatures:
fail(str(ctx.label) + " build setting allowed to take values {"
+ ", ".join(temperatures) + "} but was set to unallowed value "
+ raw_temperature)
return TemperatureProvider(type = raw_temperature)
temperature = rule(
implementation = _impl,
build_setting = config.string(flag = True)
)
การกําหนด Flag สตริงแบบหลายชุด
การตั้งค่าสตริงมีพารามิเตอร์ allow_multiple
เพิ่มเติม ซึ่งช่วยให้ตั้งค่า Flag ได้หลายครั้งในบรรทัดคำสั่งหรือใน bazelrc ค่าเริ่มต้นของโมเดลจะยังคงกำหนดด้วยแอตทริบิวต์ประเภทสตริง ดังนี้
# example/buildsettings/build_settings.bzl
allow_multiple_flag = rule(
implementation = _impl,
build_setting = config.string(flag = True, allow_multiple = True)
)
# example/BUILD
load("//example/buildsettings:build_settings.bzl", "allow_multiple_flag")
allow_multiple_flag(
name = "roasts",
build_setting_default = "medium"
)
ระบบจะถือว่าการตั้งค่าแต่ละรายการของ Flag เป็นค่าเดี่ยว ดังนี้
$ bazel build //my/target --//example:roasts=blonde \
--//example:roasts=medium,dark
ข้อมูลข้างต้นได้รับการแยกวิเคราะห์เป็น {"//example:roasts": ["blonde", "medium,dark"]}
และ ctx.build_setting_value
จะแสดงรายการ ["blonde", "medium,dark"]
การสร้างอินสแตนซ์การตั้งค่าบิลด์
กฎที่กําหนดด้วยพารามิเตอร์ build_setting
มีแอตทริบิวต์ build_setting_default
ที่จําเป็นโดยนัย แอตทริบิวต์นี้ใช้ประเภทเดียวกับที่ประกาศโดยพารามิเตอร์ build_setting
# example/buildsettings/build_settings.bzl
FlavorProvider = provider(fields = ['type'])
def _impl(ctx):
return FlavorProvider(type = ctx.build_setting_value)
flavor = rule(
implementation = _impl,
build_setting = config.string(flag = True)
)
# example/BUILD
load("//example/buildsettings:build_settings.bzl", "flavor")
flavor(
name = "favorite_flavor",
build_setting_default = "APPLE"
)
การตั้งค่าที่กำหนดไว้ล่วงหน้า
ไลบรารี Skylib มีชุดการตั้งค่าที่กำหนดไว้ล่วงหน้าซึ่งคุณสามารถสร้างอินสแตนซ์ได้โดยไม่ต้องเขียน Starlark ที่กำหนดเอง
ตัวอย่างเช่น หากต้องการกำหนดการตั้งค่าที่ยอมรับชุดค่าสตริงแบบจํากัด ให้ทําดังนี้
# example/BUILD
load("@bazel_skylib//rules:common_settings.bzl", "string_flag")
string_flag(
name = "myflag",
values = ["a", "b", "c"],
build_setting_default = "a",
)
โปรดดูรายการที่สมบูรณ์ที่หัวข้อกฎการตั้งค่าการสร้างทั่วไป
การใช้การตั้งค่าบิลด์
ขึ้นอยู่กับการตั้งค่าบิลด์
หากเป้าหมายต้องการอ่านข้อมูลการกําหนดค่า เป้าหมายจะขึ้นอยู่กับการตั้งค่าบิลด์โดยตรงผ่านข้อกําหนดของแอตทริบิวต์ปกติ
# example/rules.bzl
load("//example/buildsettings:build_settings.bzl", "FlavorProvider")
def _rule_impl(ctx):
if ctx.attr.flavor[FlavorProvider].type == "ORANGE":
...
drink_rule = rule(
implementation = _rule_impl,
attrs = {
"flavor": attr.label()
}
)
# example/BUILD
load("//example:rules.bzl", "drink_rule")
load("//example/buildsettings:build_settings.bzl", "flavor")
flavor(
name = "favorite_flavor",
build_setting_default = "APPLE"
)
drink_rule(
name = "my_drink",
flavor = ":favorite_flavor",
)
ภาษาอาจต้องการสร้างชุดการตั้งค่าเวอร์ชัน Canonical ซึ่งกฎทั้งหมดสำหรับภาษานั้นขึ้นอยู่กับ แม้ว่าแนวคิดดั้งเดิมของ fragments
จะไม่ได้อยู่ในรูปแบบออบเจ็กต์ที่ฮาร์ดโค้ดแล้วในโลกการกำหนดค่า Starlark แต่วิธีหนึ่งในการแปลแนวคิดนี้ก็คือการใช้ชุดแอตทริบิวต์ทั่วไปโดยนัย เช่น
# kotlin/rules.bzl
_KOTLIN_CONFIG = {
"_compiler": attr.label(default = "//kotlin/config:compiler-flag"),
"_mode": attr.label(default = "//kotlin/config:mode-flag"),
...
}
...
kotlin_library = rule(
implementation = _rule_impl,
attrs = dicts.add({
"library-attr": attr.string()
}, _KOTLIN_CONFIG)
)
kotlin_binary = rule(
implementation = _binary_impl,
attrs = dicts.add({
"binary-attr": attr.label()
}, _KOTLIN_CONFIG)
การใช้การตั้งค่าการสร้างในบรรทัดคำสั่ง
คุณสามารถใช้บรรทัดคำสั่งเพื่อตั้งค่าบิลด์ที่ทำเครื่องหมายเป็นแฟล็กได้ ซึ่งคล้ายกับแฟล็กเนทีฟส่วนใหญ่ ชื่อการตั้งค่าการสร้างคือเส้นทางเป้าหมายแบบสมบูรณ์โดยใช้ไวยากรณ์ name=value
ดังนี้
$ bazel build //my/target --//example:string_flag=some-value # allowed
$ bazel build //my/target --//example:string_flag some-value # not allowed
ระบบรองรับไวยากรณ์บูลีนพิเศษต่อไปนี้
$ bazel build //my/target --//example:boolean_flag
$ bazel build //my/target --no//example:boolean_flag
การใช้ชื่อแทนการตั้งค่าบิลด์
คุณสามารถตั้งค่าแทนสำหรับเส้นทางเป้าหมายการตั้งค่าบิลด์เพื่อให้อ่านได้ง่ายขึ้นในบรรทัดคำสั่ง ชื่อแทนจะทำงานคล้ายกับ Flag เนทีฟและใช้ประโยชน์จากไวยากรณ์ตัวเลือกขีดกลางคู่
สร้างชื่อแทนโดยเพิ่ม --flag_alias=ALIAS_NAME=TARGET_PATH
ใน .bazelrc
เช่น หากต้องการตั้งค่าอีเมลแทนเป็น coffee
ให้ทำดังนี้
# .bazelrc
build --flag_alias=coffee=//experimental/user/starlark_configurations/basic_build_setting:coffee-temp
แนวทางปฏิบัติแนะนำ: การตั้งค่าชื่อแทนหลายครั้งจะทำให้รายการล่าสุดมีผลเหนือกว่า ใช้ชื่อแทนที่ไม่ซ้ำกันเพื่อหลีกเลี่ยงผลลัพธ์การแยกวิเคราะห์ที่ไม่ต้องการ
หากต้องการใช้อีเมลแทน ให้พิมพ์อีเมลนั้นแทนเส้นทางเป้าหมายของการตั้งค่าการสร้าง
เมื่อใช้ตัวอย่าง coffee
ที่ระบุไว้ใน .bazelrc
ของผู้ใช้
$ bazel build //my/target --coffee=ICED
แทนที่จะเป็น
$ bazel build //my/target --//experimental/user/starlark_configurations/basic_build_setting:coffee-temp=ICED
แนวทางปฏิบัติแนะนำ: แม้ว่าคุณจะตั้งค่าชื่อแทนในบรรทัดคำสั่งได้ แต่การปล่อยให้ชื่ออยู่ใน .bazelrc
จะลดความยุ่งเหยิงในบรรทัดคำสั่ง
การตั้งค่าบิลด์ประเภทป้ายกำกับ
การตั้งค่าประเภทป้ายกำกับจะใช้พารามิเตอร์กฎ build_setting
ไม่ได้ ซึ่งต่างจากการตั้งค่าบิลด์อื่นๆ แต่ Bazel มีกฎในตัว 2 กฎ ได้แก่ label_flag
และ label_setting
กฎเหล่านี้จะส่งต่อผู้ให้บริการของเป้าหมายจริงที่ตั้งค่าการสร้างไว้ label_flag
และ label_setting
จะอ่าน/เขียนได้โดยการเปลี่ยน และผู้ใช้จะตั้งค่า label_flag
ได้เช่นเดียวกับกฎ build_setting
อื่นๆ ความแตกต่างเพียงอย่างเดียวคือ
คุณไม่สามารถกำหนดแบบกำหนดเองได้
การตั้งค่าประเภทป้ายกํากับจะเข้ามาแทนที่ฟังก์ชันการเชื่อมโยงค่าเริ่มต้นในภายหลัง แอตทริบิวต์เริ่มต้นแบบล่าช้าคือแอตทริบิวต์ประเภทป้ายกำกับที่มีค่าสุดท้ายซึ่งอาจได้รับผลกระทบจากการกําหนดค่า ใน Starlark การดำเนินการนี้จะแทนที่ API ของ configuration_field
# example/rules.bzl
MyProvider = provider(fields = ["my_field"])
def _dep_impl(ctx):
return MyProvider(my_field = "yeehaw")
dep_rule = rule(
implementation = _dep_impl
)
def _parent_impl(ctx):
if ctx.attr.my_field_provider[MyProvider].my_field == "cowabunga":
...
parent_rule = rule(
implementation = _parent_impl,
attrs = { "my_field_provider": attr.label() }
)
# example/BUILD
load("//example:rules.bzl", "dep_rule", "parent_rule")
dep_rule(name = "dep")
parent_rule(name = "parent", my_field_provider = ":my_field_provider")
label_flag(
name = "my_field_provider",
build_setting_default = ":dep"
)
การตั้งค่าบิลด์และ select()
ผู้ใช้จะกำหนดค่าแอตทริบิวต์ในการตั้งค่าบิลด์ได้โดยใช้ select()
เป้าหมายการตั้งค่าการสร้างสามารถส่งไปยังแอตทริบิวต์ flag_values
ของ config_setting
ระบบจะส่งค่าที่จะจับคู่กับการกำหนดค่าเป็น String
จากนั้นจึงแยกวิเคราะห์เป็นประเภทการตั้งค่าบิลด์สำหรับการจับคู่
config_setting(
name = "my_config",
flag_values = {
"//example:favorite_flavor": "MANGO"
}
)
การเปลี่ยนที่ผู้ใช้กำหนด
การเปลี่ยนการกําหนดค่าจะแมปการเปลี่ยนรูปแบบจากเป้าหมายที่กําหนดค่าไว้หนึ่งไปยังอีกเป้าหมายหนึ่งภายในกราฟการสร้าง
การกําหนด
การเปลี่ยนจะกำหนดการเปลี่ยนแปลงการกำหนดค่าระหว่างกฎต่างๆ เช่น คำขออย่าง "คอมไพล์ข้อกำหนดของฉันสำหรับ CPU ที่แตกต่างจากของรายการหลัก" จะจัดการโดยการเปลี่ยน
ในทางเทคนิคแล้ว การเปลี่ยนสถานะคือฟังก์ชันจากการกำหนดค่าอินพุตไปยังการกำหนดค่าเอาต์พุตอย่างน้อย 1 รายการ ทรานซิชันส่วนใหญ่เป็นแบบ 1:1 เช่น "ลบล้างการกำหนดค่าอินพุตด้วย --cpu=ppc
" ทรานซิชันแบบ 1:2 ขึ้นไปก็มีเช่นกัน แต่มีข้อจำกัดพิเศษ
ใน Starlark การเปลี่ยนสถานะจะกำหนดคล้ายกับกฎ โดยมีtransition()
ฟังก์ชันที่กําหนด และฟังก์ชันการใช้งาน
# example/transitions/transitions.bzl
def _impl(settings, attr):
_ignore = (settings, attr)
return {"//example:favorite_flavor" : "MINT"}
hot_chocolate_transition = transition(
implementation = _impl,
inputs = [],
outputs = ["//example:favorite_flavor"]
)
ฟังก์ชัน transition()
จะมีฟังก์ชันการใช้งาน ชุดการตั้งค่าบิลด์ที่จะอ่าน(inputs
) และชุดการตั้งค่าบิลด์ที่จะเขียน (outputs
) ฟังก์ชันการใช้งานมีพารามิเตอร์ 2 ตัว ได้แก่ settings
และattr
settings
คือพจนานุกรม {String
:Object
} ของการตั้งค่าทั้งหมดที่ประกาศในพารามิเตอร์ inputs
เป็น transition()
attr
คือพจนานุกรมของแอตทริบิวต์และค่าของกฎที่แนบการเปลี่ยน เมื่อแนบเป็นการเปลี่ยนขอบขาออก ค่าของแอตทริบิวต์เหล่านี้ทั้งหมดจะได้รับการกําหนดค่าหลังจากการแก้ปัญหา select() เมื่อแนบเป็นการเปลี่ยนผ่านขอบขาเข้า attr
จะไม่รวมแอตทริบิวต์ที่ใช้ตัวเลือกเพื่อแก้ไขค่า หากการเปลี่ยนผ่านขอบขาเข้าใน --foo
อ่านแอตทริบิวต์ bar
แล้วเลือกใน --foo
เพื่อตั้งค่าแอตทริบิวต์ bar
ด้วย ก็มีโอกาสที่การเปลี่ยนผ่านขอบขาเข้าจะอ่านค่า bar
ที่ไม่ถูกต้องในการเปลี่ยนผ่าน
ฟังก์ชันการใช้งานต้องแสดงผลพจนานุกรม (หรือรายการพจนานุกรมในกรณีที่มีการเปลี่ยนที่มีการกำหนดค่าเอาต์พุตหลายรายการ) ของค่าการตั้งค่าบิลด์ใหม่ที่จะใช้ ชุดคีย์ของพจนานุกรมที่แสดงผลต้องมีชุดการตั้งค่าบิลด์ที่ส่งไปยังพารามิเตอร์ outputs
ของฟังก์ชันการเปลี่ยนผ่านอย่างตรงกันทุกประการ เหตุการณ์เช่นนี้เกิดขึ้นได้เสมอแม้ว่าการตั้งค่าบิลด์จะไม่ได้เปลี่ยนแปลงไปจริงๆ ในระหว่างการเปลี่ยน คุณต้องส่งค่าเดิมผ่านพจนานุกรมที่แสดงผลอย่างชัดเจน
การกําหนดการเปลี่ยน 1:2 ขึ้นไป
การเปลี่ยนขอบขาออกสามารถแมปการกำหนดค่าอินพุตเดียวกับการกำหนดค่าเอาต์พุต 2 รายการขึ้นไป ซึ่งมีประโยชน์สำหรับการกำหนดกฎที่รวมโค้ดแบบหลายสถาปัตยกรรม
ทรานซิชัน 1:2 ขึ้นไปจะกำหนดโดยการแสดงรายการพจนานุกรมในฟังก์ชันการใช้งานทรานซิชัน
# example/transitions/transitions.bzl
def _impl(settings, attr):
_ignore = (settings, attr)
return [
{"//example:favorite_flavor" : "LATTE"},
{"//example:favorite_flavor" : "MOCHA"},
]
coffee_transition = transition(
implementation = _impl,
inputs = [],
outputs = ["//example:favorite_flavor"]
)
นอกจากนี้ ยังตั้งค่าคีย์ที่กำหนดเองซึ่งฟังก์ชันการติดตั้งใช้งานกฎสามารถใช้เพื่ออ่านแต่ละรายการต่อไปนี้ได้
# example/transitions/transitions.bzl
def _impl(settings, attr):
_ignore = (settings, attr)
return {
"Apple deps": {"//command_line_option:cpu": "ppc"},
"Linux deps": {"//command_line_option:cpu": "x86"},
}
multi_arch_transition = transition(
implementation = _impl,
inputs = [],
outputs = ["//command_line_option:cpu"]
)
การแนบทรานซิชัน
ทรานซิชันจะแนบได้ 2 ที่ ได้แก่ ขอบขาเข้าและขอบขาออก ซึ่งหมายความว่ากฎสามารถเปลี่ยนการกำหนดค่าของตนเอง (การเปลี่ยนผ่านขอบขาเข้า) และเปลี่ยนการกำหนดค่าของรายการที่ตนพึ่งพา (การเปลี่ยนผ่านขอบขาออก)
หมายเหตุ: ปัจจุบันยังไม่มีวิธีแนบการเปลี่ยนผ่าน Starlark กับกฎเนทีฟ หากต้องการดำเนินการนี้ โปรดติดต่อ bazel-discuss@googlegroups.com เพื่อขอความช่วยเหลือในการหาวิธีแก้ปัญหาชั่วคราว
การเปลี่ยนขอบขาเข้า
เปิดใช้งานการเปลี่ยนขอบขาเข้าได้โดยการแนบออบเจ็กต์ transition
(สร้างโดย transition()
) ลงในพารามิเตอร์ cfg
ของ rule()
:
# example/rules.bzl
load("example/transitions:transitions.bzl", "hot_chocolate_transition")
drink_rule = rule(
implementation = _impl,
cfg = hot_chocolate_transition,
...
ทรานซิชันขอบขาเข้าต้องเป็นทรานซิชัน 1:1
ทรานซิชันขอบขาออก
ทรานซิชันขอบขาออกจะเปิดใช้งานโดยการแนบออบเจ็กต์ transition
(สร้างโดย transition()
) กับพารามิเตอร์ cfg
ของแอตทริบิวต์ ดังนี้
# example/rules.bzl
load("example/transitions:transitions.bzl", "coffee_transition")
drink_rule = rule(
implementation = _impl,
attrs = { "dep": attr.label(cfg = coffee_transition)}
...
ทรานซิชันขอบขาออกอาจเป็น 1:1 หรือ 1:2 ขึ้นไป
ดูวิธีอ่านคีย์เหล่านี้ได้ที่การเข้าถึงแอตทริบิวต์ที่มีการเปลี่ยน
การเปลี่ยนในตัวเลือกเนทีฟ
นอกจากนี้ การเปลี่ยนผ่าน Starlark ยังประกาศการอ่านและการเขียนในตัวเลือกการกำหนดค่าบิลด์เนทีฟผ่านคำนำหน้าพิเศษสำหรับชื่อตัวเลือกได้ด้วย
# example/transitions/transitions.bzl
def _impl(settings, attr):
_ignore = (settings, attr)
return {"//command_line_option:cpu": "k8"}
cpu_transition = transition(
implementation = _impl,
inputs = [],
outputs = ["//command_line_option:cpu"]
ตัวเลือกเนทีฟที่ไม่รองรับ
Bazel ไม่รองรับการเปลี่ยนใน --define
ด้วย "//command_line_option:define"
แต่ให้ใช้การตั้งค่าบิลด์ที่กำหนดเองแทน โดยทั่วไปเราไม่แนะนำให้ใช้ --define
ใหม่ แนะนำให้ใช้การตั้งค่าบิลด์แทน
Bazel ไม่รองรับการเปลี่ยนใน --config
เนื่องจาก --config
เป็น Flag "expansion" ที่ขยายไปยัง Flag อื่นๆ
ที่สำคัญคือ --config
อาจรวม Flag ที่ไม่ส่งผลต่อการกำหนดค่าบิลด์ เช่น --spawn_strategy
Bazel ไม่สามารถเชื่อมโยง Flag ดังกล่าวกับแต่ละเป้าหมายตามการออกแบบ ซึ่งหมายความว่าไม่มีวิธีใช้ที่สอดคล้องกับการเปลี่ยน
วิธีแก้ปัญหาชั่วคราวคือคุณสามารถระบุ Flag ที่เป็นส่วนหนึ่งของการกําหนดค่าในการเปลี่ยนผ่านอย่างชัดเจน ซึ่งต้องคงการขยายตัวของ --config
ไว้ 2 แห่ง ซึ่งเป็นข้อบกพร่องที่ทราบกันดีของ UI
การเปลี่ยนเมื่อมีการอนุญาตการตั้งค่าบิลด์หลายรายการ
เมื่อตั้งค่าการสร้างที่อนุญาตหลายค่า คุณต้องตั้งค่าของการตั้งค่าด้วยลิสต์
# example/buildsettings/build_settings.bzl
string_flag = rule(
implementation = _impl,
build_setting = config.string(flag = True, allow_multiple = True)
)
# example/BUILD
load("//example/buildsettings:build_settings.bzl", "string_flag")
string_flag(name = "roasts", build_setting_default = "medium")
# example/transitions/rules.bzl
def _transition_impl(settings, attr):
# Using a value of just "dark" here will throw an error
return {"//example:roasts" : ["dark"]},
coffee_transition = transition(
implementation = _transition_impl,
inputs = [],
outputs = ["//example:roasts"]
)
การเปลี่ยนแบบที่ไม่มีการดำเนินการ
หากการเปลี่ยนแสดงผลเป็น {}
, []
หรือ None
แสดงว่าเป็นการย่อสำหรับการรักษาการตั้งค่าทั้งหมดไว้ที่ค่าเดิม วิธีนี้สะดวกกว่าการตั้งค่า
เอาต์พุตแต่ละรายการอย่างชัดเจน
# example/transitions/transitions.bzl
def _impl(settings, attr):
_ignore = (attr)
if settings["//example:already_chosen"] is True:
return {}
return {
"//example:favorite_flavor": "dark chocolate",
"//example:include_marshmallows": "yes",
"//example:desired_temperature": "38C",
}
hot_chocolate_transition = transition(
implementation = _impl,
inputs = ["//example:already_chosen"],
outputs = [
"//example:favorite_flavor",
"//example:include_marshmallows",
"//example:desired_temperature",
]
)
การเข้าถึงแอตทริบิวต์ที่มีการเปลี่ยนผ่าน
เมื่อแนบทรานซิชันกับขอบขาออก (ไม่ว่าจะทรานซิชันแบบ 1:1 หรือ 1:2 ขึ้นไป) ระบบจะบังคับให้ ctx.attr
เป็นลิสต์ หากยังไม่ได้เป็น ไม่ได้ระบุลำดับขององค์ประกอบในรายการนี้
# example/transitions/rules.bzl
def _transition_impl(settings, attr):
return {"//example:favorite_flavor" : "LATTE"},
coffee_transition = transition(
implementation = _transition_impl,
inputs = [],
outputs = ["//example:favorite_flavor"]
)
def _rule_impl(ctx):
# Note: List access even though "dep" is not declared as list
transitioned_dep = ctx.attr.dep[0]
# Note: Access doesn't change, other_deps was already a list
for other_dep in ctx.attr.other_deps:
# ...
coffee_rule = rule(
implementation = _rule_impl,
attrs = {
"dep": attr.label(cfg = coffee_transition)
"other_deps": attr.label_list(cfg = coffee_transition)
})
หากการเปลี่ยนเป็น 1:2+
และตั้งค่าคีย์ที่กำหนดเอง คุณจะใช้ ctx.split_attr
เพื่ออ่าน Dep แต่ละรายการสำหรับแต่ละคีย์ได้ ดังนี้
# example/transitions/rules.bzl
def _impl(settings, attr):
_ignore = (settings, attr)
return {
"Apple deps": {"//command_line_option:cpu": "ppc"},
"Linux deps": {"//command_line_option:cpu": "x86"},
}
multi_arch_transition = transition(
implementation = _impl,
inputs = [],
outputs = ["//command_line_option:cpu"]
)
def _rule_impl(ctx):
apple_dep = ctx.split_attr.dep["Apple deps"]
linux_dep = ctx.split_attr.dep["Linux deps"]
# ctx.attr has a list of all deps for all keys. Order is not guaranteed.
all_deps = ctx.attr.dep
multi_arch_rule = rule(
implementation = _rule_impl,
attrs = {
"dep": attr.label(cfg = multi_arch_transition)
})
ดูตัวอย่างที่สมบูรณ์ได้ที่นี่
การผสานรวมกับแพลตฟอร์มและเครื่องมือ
แฟล็กเนทีฟจำนวนมากในปัจจุบัน เช่น --cpu
และ --crosstool_top
เกี่ยวข้องกับความละเอียดของ Toolchain ในอนาคต การเปลี่ยนสถานะอย่างชัดเจนใน Flag ประเภทเหล่านี้มีแนวโน้มที่จะเปลี่ยนไปใช้การเปลี่ยนสถานะในแพลตฟอร์มเป้าหมาย
ข้อควรพิจารณาเกี่ยวกับหน่วยความจำและประสิทธิภาพ
การเพิ่มทรานซิชันและการกำหนดค่าใหม่ลงในบิลด์จะส่งผลเสียดังนี้ กราฟบิลด์มีขนาดใหญ่ขึ้น กราฟบิลด์เข้าใจยากขึ้น และบิลด์ช้าลง คุณควรพิจารณาค่าใช้จ่ายเหล่านี้เมื่อพิจารณาใช้ทรานซิชันในกฎการสร้าง ด้านล่างนี้คือตัวอย่างวิธีที่การเปลี่ยนอาจทําให้กราฟการสร้างเติบโตแบบทวีคูณ
งานสร้างที่ประพฤติไม่ดี: กรณีศึกษา
รูปที่ 1 กราฟความสามารถในการปรับขนาดที่แสดงเป้าหมายระดับบนสุดและรายการที่เกี่ยวข้อง
กราฟนี้แสดงเป้าหมายระดับบนสุด //pkg:app
ซึ่งขึ้นอยู่กับเป้าหมาย 2 รายการ ได้แก่ //pkg:1_0
และ //pkg:1_1
เป้าหมายทั้ง 2 รายการนี้ขึ้นอยู่กับเป้าหมาย 2 รายการ ได้แก่ //pkg:2_0
และ
//pkg:2_1
เป้าหมายทั้ง 2 รายการนี้ขึ้นอยู่กับ 2 เป้าหมาย คือ //pkg:3_0
และ //pkg:3_1
การดำเนินการนี้จะดำเนินต่อไปจนกว่าถึง //pkg:n_0
และ //pkg:n_1
ซึ่งทั้ง 2 รายการนี้ขึ้นอยู่กับเป้าหมายเดียว //pkg:dep
อาคาร //pkg:app
ต้องใช้ \(2n+2\) เป้าหมายต่อไปนี้
//pkg:app
//pkg:dep
//pkg:i_0
และ//pkg:i_1
สำหรับ \(i\) ใน \([1..n]\)
สมมติว่าคุณใช้ Flag
--//foo:owner=<STRING>
และ //pkg:i_b
มีผล
depConfig = myConfig + depConfig.owner="$(myConfig.owner)$(b)"
กล่าวคือ //pkg:i_b
จะเพิ่ม b
ต่อท้ายค่าเดิมของ --owner
สำหรับตัวคั่นทั้งหมด
ซึ่งจะสร้างเป้าหมายที่กําหนดค่าแล้วดังต่อไปนี้
//pkg:app //foo:owner=""
//pkg:1_0 //foo:owner=""
//pkg:1_1 //foo:owner=""
//pkg:2_0 (via //pkg:1_0) //foo:owner="0"
//pkg:2_0 (via //pkg:1_1) //foo:owner="1"
//pkg:2_1 (via //pkg:1_0) //foo:owner="0"
//pkg:2_1 (via //pkg:1_1) //foo:owner="1"
//pkg:3_0 (via //pkg:1_0 → //pkg:2_0) //foo:owner="00"
//pkg:3_0 (via //pkg:1_0 → //pkg:2_1) //foo:owner="01"
//pkg:3_0 (via //pkg:1_1 → //pkg:2_0) //foo:owner="10"
//pkg:3_0 (via //pkg:1_1 → //pkg:2_1) //foo:owner="11"
...
//pkg:dep
ผลิต \(2^n\) เป้าหมายที่กําหนดค่าแล้ว: config.owner=
"\(b_0b_1...b_n\)" สําหรับ \(b_i\) ทั้งหมดใน \(\{0,1\}\)
ซึ่งทําให้กราฟการสร้างมีขนาดใหญ่กว่ากราฟเป้าหมายหลายเท่า ส่งผลต่อหน่วยความจําและประสิทธิภาพ
TODO: เพิ่มกลยุทธ์ในการวัดผลและบรรเทาปัญหาเหล่านี้
อ่านเพิ่มเติม
ดูรายละเอียดเพิ่มเติมเกี่ยวกับการแก้ไขการกำหนดค่าบิลด์ได้ที่
- การกำหนดค่าบิลด์ของ Starlark
- โรดแมปการกำหนดค่า Bazel
- ชุดตัวอย่างแบบครบวงจร