इस पेज पर, Bazel की मदद से प्रोग्राम बनाने, बिल्ड कमांड सिंटैक्स, और टारगेट पैटर्न सिंटैक्स के बारे में बताया गया है.
क्विकस्टार्ट
Bazel को चलाने के लिए, अपनी बेस workspace डायरेक्ट्री या उसकी किसी भी सब-डायरेक्ट्री पर जाएं और bazel
टाइप करें. अगर आपको नया फ़ाइल फ़ोल्डर बनाना है, तो बिल्ड देखें.
bazel help
[Bazel release bazel version]
Usage: bazel command options ...
उपलब्ध निर्देश
analyze-profile
: बिल्ड प्रोफ़ाइल के डेटा का विश्लेषण करता है.aquery
: विश्लेषण के बाद ऐक्शन ग्राफ़ पर क्वेरी लागू करता है.build
: तय किए गए टारगेट बनाता है.canonicalize-flags
: Bazel फ़्लैग को कैननिकल बनाएं.clean
: आउटपुट फ़ाइलें हटाता है और सर्वर को बंद कर देता है.cquery
: डिपेंडेंसी ग्राफ़ की विश्लेषण के बाद की जाने वाली क्वेरी को लागू करता है.dump
: Bazel सर्वर प्रोसेस की इंटरनल स्टेटस को डंप करता है.help
: निर्देशों या इंडेक्स के लिए सहायता प्रिंट करता है.info
: यह बैज सर्वर के बारे में रनटाइम की जानकारी दिखाता है.fetch
: किसी टारगेट की सभी बाहरी डिपेंडेंसी फ़ेच करता है.mobile-install
: मोबाइल डिवाइसों पर ऐप्लिकेशन इंस्टॉल करता है.query
: डिपेंडेंसी ग्राफ़ क्वेरी को लागू करता है.run
: तय किए गए टारगेट को चलाता है.shutdown
: Bazel सर्वर को बंद करता है.test
: तय किए गए टेस्ट टारगेट बनाता और चलाता है.version
: Bazel के वर्शन की जानकारी प्रिंट करता है.
सहायता पाना
bazel help command
: प्रिंट सहायता औरcommand
के लिए विकल्प.bazel help
startup_options
: Bazel को होस्ट करने वाले JVM के विकल्प.bazel help
target-syntax
: टारगेट तय करने के सिंटैक्स के बारे में बताता है.bazel help info-keys
: यह जानकारी कमांड में इस्तेमाल की गई कुंजियों की सूची दिखाता है.
bazel
टूल कई फ़ंक्शन करता है. इन्हें निर्देश कहा जाता है. आम तौर पर, bazel build
और bazel test
का इस्तेमाल किया जाता है. bazel help
का इस्तेमाल करके, ऑनलाइन सहायता के मैसेज ब्राउज़ किए जा सकते हैं.
एक टारगेट बनाना
कोई बिल्ड शुरू करने से पहले, आपके पास वर्कस्पेस होना चाहिए. वर्कस्पेस एक डायरेक्ट्री ट्री होता है. इसमें आपके ऐप्लिकेशन को बनाने के लिए ज़रूरी सभी सोर्स फ़ाइलें होती हैं. Basel आपको पूरी तरह से रीड-ओनली वॉल्यूम से बिल्ड करने की सुविधा देता है.
Bazel की मदद से प्रोग्राम बनाने के लिए, bazel build
टाइप करें. इसके बाद, वह टारगेट टाइप करें जिसे आपको बनाना है.
bazel build //foo
//foo
बनाने का निर्देश देने के बाद, आपको इससे मिलता-जुलता आउटपुट दिखेगा:
INFO: Analyzed target //foo:foo (14 packages loaded, 48 targets configured).
INFO: Found 1 target...
Target //foo:foo up-to-date:
bazel-bin/foo/foo
INFO: Elapsed time: 9.905s, Critical Path: 3.25s
INFO: Build completed successfully, 6 total actions
सबसे पहले, Bazel आपके टारगेट के डिपेंडेंसी ग्राफ़ में सभी पैकेज लोड करता है. इसमें एलान की गई डिपेंडेंसी शामिल हैं. ये फ़ाइलें, टारगेट की BUILD
फ़ाइल में सीधे तौर पर शामिल होती हैं. साथ ही, इसमें ट्रांज़िशन डिपेंडेंसी भी शामिल हैं. ये फ़ाइलें, टारगेट की डिपेंडेंसी की BUILD
फ़ाइलों में शामिल होती हैं. सभी डिपेंडेंसी की पहचान करने के बाद, Bazel उनकी सही होने की जांच करता है और बिल्ड ऐक्शन बनाता है. आखिर में, Bazel, बाइल्ड के कंपाइलर और अन्य टूल इस्तेमाल करता है.
बिल्ड के एक्सीक्यूशन फ़ेज़ के दौरान, Bazel प्रोग्रेस मैसेज प्रिंट करता है. प्रोग्रेस मैसेज में, बने प्रोग्राम के मौजूदा चरण (जैसे, कंपाइलर या लिंकर) के शुरू होने की जानकारी शामिल होती है. साथ ही, बने प्रोग्राम की कुल कार्रवाइयों में से पूरी की गई कार्रवाइयों की संख्या भी शामिल होती है. बिल्ड शुरू होते ही, कुल कार्रवाइयों की संख्या अक्सर बढ़ जाती है क्योंकि बेज़ल पूरा ऐक्शन ग्राफ़ खोजते हैं, लेकिन कुछ ही सेकंड में ये संख्या स्थिर हो जाती है.
बिल्ड के आखिर में, Bazel यह जानकारी दिखाता है कि किन टारगेट का अनुरोध किया गया था, वे बिल्ड हुए या नहीं, और अगर बिल्ड हुए हैं, तो आउटपुट फ़ाइलें कहां मिल सकती हैं. बिल्ड चलाने वाली स्क्रिप्ट, इस आउटपुट को भरोसेमंद तरीके से पार्स कर सकती हैं. ज़्यादा जानकारी के लिए, --show_result
देखें.
अगर आप वही निर्देश फिर से टाइप करते हैं, तो बिल्ड ज़्यादा तेज़ी से काम करता है.
bazel build //foo
INFO: Analyzed target //foo:foo (0 packages loaded, 0 targets configured).
INFO: Found 1 target...
Target //foo:foo up-to-date:
bazel-bin/foo/foo
INFO: Elapsed time: 0.144s, Critical Path: 0.00s
INFO: Build completed successfully, 1 total action
यह शून्य बिल्ड है. कोई भी बदलाव न होने की वजह से, फिर से लोड करने के लिए कोई पैकेज नहीं है और न ही बिल्ड का कोई चरण लागू करने की ज़रूरत नहीं है. अगर 'foo' या उसकी डिपेंडेंसी में कोई बदलाव होता है, तो Bazel कुछ बिल्ड ऐक्शन फिर से चलाएगा या इंक्रीमेंटल बिल्ड पूरा करेगा.
कई लक्ष्य बनाना
Baज़ल, लक्ष्यों को तय करने के कई तरीके देते हैं. इन्हें एक साथ, टारगेट पैटर्न कहा जाता है. इस सिंटैक्स का इस्तेमाल build
, test
या query
जैसे निर्देशों में किया जाता है.
लेबल का इस्तेमाल, अलग-अलग टारगेट तय करने के लिए किया जाता है. जैसे, BUILD
फ़ाइलों में डिपेंडेंसी का एलान करने के लिए. वहीं, Bazel के टारगेट पैटर्न से कई टारगेट तय किए जाते हैं. टारगेट पैटर्न, वाइल्डकार्ड का इस्तेमाल करके टारगेट के सेट के लिए लेबल सिंटैक्स का सामान्यीकरण है. सबसे आसान मामले में, कोई भी मान्य लेबल एक मान्य टारगेट पैटर्न भी होता है. यह सिर्फ़ एक टारगेट के सेट की पहचान करता है.
//
से शुरू होने वाले सभी टारगेट पैटर्न, मौजूदा वर्कस्पेस के हिसाब से हल किए जाते हैं.
//foo/bar:wiz |
सिर्फ़ एक टारगेट //foo/bar:wiz . |
//foo/bar |
//foo/bar:bar के बराबर. |
//foo/bar:all |
पैकेज foo/bar में मौजूद सभी नियम टारगेट. |
//foo/... |
डायरेक्ट्री foo के नीचे मौजूद सभी पैकेज में मौजूद सभी नियम टारगेट. |
//foo/...:all |
डायरेक्ट्री foo के नीचे मौजूद सभी पैकेज में मौजूद सभी नियम टारगेट. |
//foo/...:* |
डायरेक्ट्री foo के नीचे मौजूद सभी पैकेज के सभी टारगेट (नियम और फ़ाइलें). |
//foo/...:all-targets |
डायरेक्ट्री foo के नीचे मौजूद सभी पैकेज के सभी टारगेट (नियम और फ़ाइलें). |
//... |
फ़ाइल फ़ोल्डर में मौजूद पैकेज के सभी टारगेट. इसमें बाहरी डेटा स्टोर करने की जगहों के टारगेट शामिल नहीं हैं. |
//:all |
अगर फ़ाइल फ़ोल्डर के रूट में `BUILD` फ़ाइल मौजूद है, तो टॉप-लेवल पैकेज में मौजूद सभी टारगेट. |
//
से शुरू न होने वाले टारगेट पैटर्न, मौजूदा वर्किंग डायरेक्ट्री के हिसाब से हल किए जाते हैं. इन उदाहरणों में, foo
की वर्किंग डायरेक्ट्री का इस्तेमाल किया गया है:
:foo |
//foo:foo के बराबर. |
bar:wiz |
//foo/bar:wiz के बराबर. |
bar/wiz |
इनके बराबर है:
|
bar:all |
//foo/bar:all की तरह काम करता है. |
:all |
//foo:all के बराबर. |
...:all |
//foo/...:all की तरह काम करता है. |
... |
//foo/...:all की तरह काम करता है. |
bar/...:all |
//foo/bar/...:all की तरह काम करता है. |
डिफ़ॉल्ट रूप से, बार-बार इस्तेमाल होने वाले टारगेट पैटर्न के लिए, डायरेक्ट्री के सिमलिंक का इस्तेमाल किया जाता है. हालांकि, उन सिमलिंक के लिए ऐसा नहीं किया जाता जो आउटपुट बेस में मौजूद होते हैं. जैसे, Workspace की रूट डायरेक्ट्री में बनाए गए सिमलिंक.
इसके अलावा, Bazel किसी भी डायरेक्ट्री में, बार-बार इस्तेमाल होने वाले टारगेट पैटर्न का आकलन करते समय, सिमलिंक का इस्तेमाल नहीं करता. इस डायरेक्ट्री में, इस तरह का नाम वाली फ़ाइल होनी चाहिए:
DONT_FOLLOW_SYMLINKS_WHEN_TRAVERSING_THIS_DIRECTORY_VIA_A_RECURSIVE_TARGET_PATTERN
foo/...
, पैकेज के लिए वाइल्डकार्ड है. यह डायरेक्ट्री foo
के नीचे मौजूद सभी पैकेज के बारे में बताता है. यह पैकेज पाथ के सभी रूट के लिए होता है. :all
, टारगेट के लिए वाइल्डकार्ड है. यह किसी पैकेज में मौजूद सभी नियमों से मैच करता है. इन दोनों को जोड़ा जा सकता है, जैसा कि foo/...:all
में है. जब दोनों वाइल्डकार्ड का इस्तेमाल किया जाता है, तो इसे foo/...
की तरह छोटा किया जा सकता है.
इसके अलावा, :*
(या :all-targets
) एक वाइल्डकार्ड है, जो मेल खाने वाले पैकेज के हर टारगेट से मेल खाता है. इसमें वे फ़ाइलें भी शामिल हैं जिन्हें आम तौर पर किसी नियम के तहत नहीं बनाया जाता. जैसे, java_binary
के नियमों से जुड़ी _deploy.jar
फ़ाइलें.
इसका मतलब है कि :*
, :all
के सुपरसेट को दिखाता है. हालांकि, यह सिंटैक्स भ्रमित करने वाला हो सकता है, लेकिन इसकी मदद से, सामान्य बिल्ड के लिए :all
वाइल्डकार्ड का इस्तेमाल किया जा सकता है. ऐसा तब किया जाता है, जब _deploy.jar
जैसे टारगेट बनाने की ज़रूरत न हो.
इसके अलावा, Bazel में लेबल सिंटैक्स के लिए ज़रूरी कोलन के बजाय स्लैश का इस्तेमाल किया जा सकता है. आम तौर पर, Bash फ़ाइल नाम एक्सपैंशन का इस्तेमाल करते समय यह सुविधा काम की होती है.
उदाहरण के लिए, अगर कोई पैकेज foo/bar
है, तो foo/bar/wiz
वैल्यू //foo/bar:wiz
के बराबर होगी. अगर कोई पैकेज foo
है, तो foo/bar/wiz
वैल्यू //foo:bar/wiz
के बराबर होगी.
Bazel के कई निर्देश, आर्ग्युमेंट के तौर पर टारगेट पैटर्न की सूची स्वीकार करते हैं. साथ ही, ये सभी निर्देश, प्रीफ़िक्स नेगेटिव ऑपरेटर -
का इस्तेमाल करते हैं. इसका इस्तेमाल, पिछले आर्ग्युमेंट से तय किए गए सेट से, टारगेट के किसी सेट को घटाने के लिए किया जा सकता है. ध्यान दें कि इसका मतलब है कि क्रम का ध्यान रखना ज़रूरी है. उदाहरण के लिए,
bazel build foo/... bar/...
का मतलब है कि "foo
और bar
के नीचे मौजूद सभी टारगेट बनाएं", जबकि
bazel build -- foo/... -foo/bar/...
इसका मतलब है, "foo
से नीचे दिए गए सभी टारगेट बनाएं. हालांकि, foo/bar
से नीचे दिए गए टारगेट को छोड़कर, ऐसा किया जा सकता है. (-
से शुरू होने वाले अगले आर्ग्युमेंट को अतिरिक्त विकल्पों के तौर पर शामिल होने से रोकने के लिए, --
आर्ग्युमेंट ज़रूरी है.)
हालांकि, यह बताना ज़रूरी है कि इस तरह से टारगेट घटाने से, यह गारंटी नहीं मिलेगी कि वे बिल्ट नहीं किए गए हैं. ऐसा इसलिए, क्योंकि वे उन टारगेट की डिपेंडेंसी हो सकते हैं जिन्हें घटाया नहीं गया था. उदाहरण के लिए, अगर अन्य टारगेट //foo:all-apis
के अलावा, अन्य टारगेट //foo/bar:api
पर निर्भर होते हैं, तो बाद वाला टारगेट पिछले टारगेट के हिस्से के तौर पर बनाया जाएगा.
tags = ["manual"]
वाले टारगेट, bazel build
और bazel test
जैसे निर्देशों में बताए जाने पर, वाइल्डकार्ड टारगेट पैटर्न (...
, :*
, :all
वगैरह) में शामिल नहीं किए जाते. अगर आपको Bazel को इन टारगेट को बनाने/जांच करने के लिए कहना है, तो आपको कमांड लाइन पर साफ़ तौर पर टारगेट पैटर्न के साथ ऐसे टेस्ट टारगेट बताने चाहिए. इसके उलट, bazel query
अपने-आप ऐसा कोई फ़िल्टर नहीं करता. ऐसा करने से, bazel query
का मकसद पूरा नहीं होगा.
बाहरी डिपेंडेंसी फ़ेच करना
डिफ़ॉल्ट रूप से, Bazel, बिल्ड के दौरान बाहरी डिपेंडेंसी डाउनलोड और लिंक करेगा. हालांकि, ऐसा करने की ज़रूरत नहीं हो सकती, क्योंकि आपको यह जानना है कि नई बाहरी डिपेंडेंसी कब जोड़ी जाती हैं या आपको "प्रीफ़ेच" डिपेंडेंसी कब करनी हैं (जैसे, किसी ऐसी फ़्लाइट से पहले जहां आप ऑफ़लाइन होंगे). अगर आपको बिल्ड के दौरान नई डिपेंडेंसी जोड़ने से रोकना है, तो --fetch=false
फ़्लैग का इस्तेमाल करें. ध्यान दें कि यह फ़्लैग सिर्फ़ डेटा स्टोर करने की जगह के उन नियमों पर लागू होता है जो लोकल फ़ाइल सिस्टम में किसी डायरेक्ट्री पर नहीं ले जाते. उदाहरण के लिए, local_repository
,
new_local_repository
, और Android SDK टूल और NDK रिपॉज़िटरी के नियमों में किए गए बदलाव, --fetch
की वैल्यू के बावजूद हमेशा लागू होंगे .
अगर आपने बिल्ड के दौरान फ़ेच करने की अनुमति नहीं दी है और Bazel को नई बाहरी डिपेंडेंसी मिलती हैं, तो आपका बिल्ड पूरा नहीं होगा.
bazel fetch
चलाकर, डिपेंडेंसी को मैन्युअल तरीके से फ़ेच किया जा सकता है. अगर
बिल्ड फ़ेच करने के दौरान अनुमति नहीं दी जाती है, तो आपको bazel fetch
चलाना होगा:
- पहली बार बनाने से पहले.
- नई बाहरी डिपेंडेंसी जोड़ने के बाद.
इसे चलाने के बाद, जब तक WORKSPACE फ़ाइल में बदलाव नहीं होता, तब तक आपको इसे फिर से चलाने की ज़रूरत नहीं पड़ेगी.
fetch
, डिपेंडेंसी फ़ेच करने के लिए टारगेट की सूची लेता है. उदाहरण के लिए, इससे //foo:bar
और //bar:baz
को बनाने के लिए ज़रूरी डिपेंडेंसी फ़ेच होंगी:
bazel fetch //foo:bar //bar:baz
किसी वर्कस्पेस के लिए सभी बाहरी डिपेंडेंसी फ़ेच करने के लिए, यह चलाएं:
bazel fetch //...
अगर आपके पास अपने वर्कस्पेस रूट में, इस्तेमाल किए जा रहे सभी टूल (लाइब्रेरी के jar से लेकर JDK तक) मौजूद हैं, तो आपको bazel fetch को चलाने की ज़रूरत नहीं है.
हालांकि, अगर Workspace डायरेक्ट्री के बाहर की किसी चीज़ का इस्तेमाल किया जा रहा है, तो Bazel, bazel build
को चलाने से पहले bazel fetch
को अपने-आप चला देगा.
रिपॉज़िटरी कैश मेमोरी
Bazel, एक ही फ़ाइल को कई बार फ़ेच करने से बचने की कोशिश करता है. भले ही, अलग-अलग वर्कस्पेस में एक ही फ़ाइल की ज़रूरत हो या किसी बाहरी रिपॉज़िटरी की परिभाषा बदल गई हो, लेकिन उसे डाउनलोड करने के लिए अब भी उसी फ़ाइल की ज़रूरत हो. ऐसा करने के लिए,
bazel, डाउनलोड की गई सभी फ़ाइलों को रिपॉज़िटरी कैश में कैश मेमोरी में सेव करता है. यह कैश मेमोरी डिफ़ॉल्ट रूप से ~/.cache/bazel/_bazel_$USER/cache/repos/v1/
में मौजूद होती है. --repository_cache
विकल्प की मदद से, जगह बदली जा सकती है. कैश मेमोरी को सभी फ़ाइल फ़ोल्डर और बेज़ल के इंस्टॉल किए गए वर्शन के बीच शेयर किया जाता है.
अगर बैजेल को यह पता है कि उसके पास सही फ़ाइल की कॉपी है, तो कैश मेमोरी से एक एंट्री ली जाती है. इसका मतलब है कि अगर डाउनलोड करने के अनुरोध में बताई गई फ़ाइल का SHA256 योग है और उस हैश वाली फ़ाइल कैश मेमोरी में मौजूद है. इसलिए, सुरक्षा के लिहाज़ से हर बाहरी फ़ाइल के लिए हैश तय करना न सिर्फ़ एक अच्छा आइडिया है, बल्कि इससे ग़ैर-ज़रूरी डाउनलोड से बचने में भी मदद मिलती है.
कैश मेमोरी में हर बार हिट होने पर, कैश मेमोरी में मौजूद फ़ाइल में किए गए बदलाव का समय अपडेट हो जाता है. इस तरह, कैश मेमोरी की डायरेक्ट्री में मौजूद किसी फ़ाइल के आखिरी इस्तेमाल का पता आसानी से लगाया जा सकता है. उदाहरण के लिए, कैश मेमोरी को मैन्युअल तरीके से खाली करने के लिए. कैश मेमोरी कभी भी अपने-आप नहीं मिटती, क्योंकि इसमें ऐसी फ़ाइल की कॉपी हो सकती है जो अब अपस्ट्रीम में उपलब्ध नहीं है.
डिस्ट्रिब्यूशन फ़ाइलों की डायरेक्ट्री
डिस्ट्रिब्यूशन डायरेक्ट्री, Bazel का एक और तरीका है. इसका इस्तेमाल, ग़ैर-ज़रूरी डाउनलोड से बचने के लिए किया जाता है. Baज़र, डेटा स्टोर करने की जगह की कैश मेमोरी से पहले, डिस्ट्रिब्यूशन डायरेक्ट्री खोजता है. मुख्य अंतर यह है कि डिस्ट्रिब्यूशन डायरेक्ट्री को मैन्युअल तरीके से तैयार करना पड़ता है.
--distdir=/path/to-directory
विकल्प का इस्तेमाल करके, फ़ाइलों को फ़ेच करने के बजाय, उन्हें देखने के लिए, सिर्फ़ पढ़ने के लिए उपलब्ध अन्य डायरेक्ट्री तय की जा सकती हैं. किसी फ़ाइल को ऐसी डायरेक्ट्री से तब लिया जाता है, जब फ़ाइल का नाम यूआरएल के बेस नेम से मेल खाता हो. साथ ही, फ़ाइल का हैश, डाउनलोड के अनुरोध में बताए गए हैश से मेल खाता हो. यह सिर्फ़ तब काम करता है, जब WORKSPACE एलान में फ़ाइल हैश की जानकारी दी गई हो.
फ़ाइल के नाम की शर्त को सही बनाने के लिए ज़रूरी नहीं है. हालांकि, इससे हर डायरेक्ट्री के लिए, फ़ाइलों की संख्या एक हो जाती है. इस तरीके से, डिस्ट्रिब्यूशन फ़ाइल डायरेक्ट्री की जानकारी देना असरदार रहता है, भले ही ऐसी डायरेक्ट्री में फ़ाइलों की संख्या बड़ी हो जाए.
एयरगेप्ड माहौल में बेज़ल दौड़ते हुए
Bazel के बाइनरी साइज़ को छोटा रखने के लिए, पहली बार चलाने के दौरान, Bazel की लागू डिपेंडेंसी को नेटवर्क से फ़ेच किया जाता है. इन डिपेंडेंसी में ऐसे टूलचेन और नियम शामिल होते हैं जो शायद सभी के लिए ज़रूरी न हों. उदाहरण के लिए, Android टूल सिर्फ़ तब अनबंड किए जाते हैं और फ़ेच किए जाते हैं, जब Android प्रोजेक्ट बनाए जाते हैं.
हालांकि, ये इंप्लिसिट डिपेंडेंसी होने से एयरगेप किए गए एनवायरमेंट में बैजेल चलाते समय समस्या हो सकती है, भले ही आपने अपनी सभी वर्कस्पेस डिपेंडेंसी वेंडर कर ली हो. इस समस्या को हल करने के लिए, नेटवर्क ऐक्सेस वाली मशीन पर इन डिपेंडेंसी से जुड़ी डिस्ट्रिब्यूशन डायरेक्ट्री तैयार करें. इसके बाद, ऑफ़लाइन अप्रोच की मदद से इन डिपेंडेंसी को एयरगेप किए गए एनवायरमेंट में ट्रांसफ़र करें.
डिस्ट्रिब्यूशन डायरेक्ट्री तैयार करने के लिए, --distdir
फ़्लैग का इस्तेमाल करें. आपको हर नए Bazel बाइनरी वर्शन के लिए, ऐसा एक बार करना होगा. ऐसा इसलिए, क्योंकि हर रिलीज़ के लिए, इंप्लिसिट डिपेंडेंसी अलग-अलग हो सकती हैं.
अपने एयरगैप किए गए एनवायरमेंट के बाहर इन डिपेंडेंसी को बनाने के लिए, सबसे पहले सही वर्शन में Bazel सोर्स ट्री को चेक आउट करें:
git clone https://github.com/bazelbuild/bazel "$BAZEL_DIR"
cd "$BAZEL_DIR"
git checkout "$BAZEL_VERSION"
इसके बाद, ऐसा टारबॉल बनाएं जिसमें उस खास बेज़ेल वर्शन के लिए इंप्लिसिट रनटाइम डिपेंडेंसी मौजूद हों:
bazel build @additional_distfiles//:archives.tar
इस टार्बॉल को ऐसी डायरेक्ट्री में एक्सपोर्ट करें जिसे आपके एयरगैप किए गए एनवायरमेंट में कॉपी किया जा सके. --strip-components
फ़्लैग पर ध्यान दें, क्योंकि --distdir
डायरेक्ट्री नेस्टिंग लेवल के साथ काफ़ी मुश्किल हो सकता है:
tar xvf bazel-bin/external/additional_distfiles/archives.tar \
-C "$NEW_DIRECTORY" --strip-components=3
आखिर में, अपने एयरगैप किए गए एनवायरमेंट में Bazel का इस्तेमाल करते समय, डायरेक्ट्री पर ले जाने वाला --distdir
फ़्लैग पास करें. आपकी सुविधा के लिए, इसे .bazelrc
एंट्री के तौर पर जोड़ा जा सकता है:
build --distdir=path/to/directory
कॉन्फ़िगरेशन और क्रॉस-कंपाइलेशन बनाएं
किसी खास बिल्ड के व्यवहार और नतीजे की जानकारी देने वाले सभी इनपुट को दो अलग-अलग कैटगरी में बांटा जा सकता है. पहली तरह की जानकारी, आपके प्रोजेक्ट की BUILD
फ़ाइलों में सेव की गई खास जानकारी होती है: बिल्ड नियम, उसके एट्रिब्यूट की वैल्यू, और ट्रांज़िशन डेपेंडेंसी का पूरा सेट.
दूसरा टाइप, बाहरी या पर्यावरण से जुड़ा डेटा है, जो उपयोगकर्ता या बिल्ड टूल से मिलता है: टारगेट आर्किटेक्चर, कंपाइलेशन और लिंकिंग
के विकल्प, और टूलचेन कॉन्फ़िगरेशन के अन्य विकल्प. हम पर्यावरण से जुड़े डेटा के पूरे सेट को कॉन्फ़िगरेशन कहते हैं.
किसी भी बिल्ड में, एक से ज़्यादा कॉन्फ़िगरेशन हो सकते हैं. क्रॉस-कंपाइल करने के बारे में सोचें. इसमें, 64-बिट आर्किटेक्चर के लिए //foo:bin
एक्ज़ीक्यूटेबल बनाया जाता है, लेकिन आपका वर्कस्टेशन 32-बिट मशीन है. साफ़ तौर पर, बिल्ड के लिए ऐसे टूलचेन का इस्तेमाल करके //foo:bin
बनाना होगा जो 64-बिट एक्ज़ीक्यूटेबल बनाने में सक्षम हो. हालांकि, बिल्ड सिस्टम में खुद बनाने के दौरान इस्तेमाल होने वाले अलग-अलग टूल भी बनाने चाहिए. उदाहरण के लिए, सोर्स से बनाए गए टूल, बाद में उन टूल में इस्तेमाल किए जाने वाले टूल, जैसे कि जेनरुल—और इन्हें आपके वर्कस्टेशन पर चलाने के लिए बनाया जाना चाहिए. इसलिए, हम दो कॉन्फ़िगरेशन की पहचान कर सकते हैं: exec कॉन्फ़िगरेशन, जिसका इस्तेमाल बिल्ड के दौरान चलने वाले टूल बनाने के लिए किया जाता है और टारगेट कॉन्फ़िगरेशन (या रिक्वेस्ट कॉन्फ़िगरेशन, लेकिन हम अक्सर "टारगेट कॉन्फ़िगरेशन" कहते हैं, भले ही उस शब्द के कई मतलब पहले से ही हों), जिसका इस्तेमाल उस बाइनरी को बनाने के लिए किया जाता है जिसका आपने आखिर में अनुरोध किया था.
आम तौर पर, ऐसी कई लाइब्रेरी होती हैं जो अनुरोध किए गए बाइल्ड टारगेट (//foo:bin
) और एक या एक से ज़्यादा टूल, जैसे कि कुछ बेस लाइब्रेरी, दोनों के लिए ज़रूरी होती हैं. एक्सीक्यूट और टारगेट कॉन्फ़िगरेशन के लिए, ऐसी लाइब्रेरी को कई बार बनाया जाना चाहिए. Bazel यह पक्का करता है कि सभी वैरिएंट बनाए जाएं और इंटरफ़ियरेंस से बचने के लिए, डेरिव्ड फ़ाइलों को अलग रखा जाए. आम तौर पर, ऐसे टारगेट एक साथ बनाए जा सकते हैं, क्योंकि वे एक-दूसरे से अलग होते हैं. अगर आपको प्रोग्रेस मैसेज दिखते हैं, जिनसे पता चलता है कि किसी टारगेट को कई बार बनाया जा रहा है, तो इसकी वजह यह हो सकती है.
निष्पादन कॉन्फ़िगरेशन को लक्ष्य कॉन्फ़िगरेशन से इस प्रकार प्राप्त किया जाता है:
- अनुरोध टारगेट के लिए इस्तेमाल किया गया प्लैटफ़ॉर्म, टारगेट कॉन्फ़िगरेशन के लिए टारगेट प्लैटफ़ॉर्म बन जाता है.
- अनुरोध कॉन्फ़िगरेशन में बताए गए Crosstool (
--crosstool_top
) के उसी वर्शन का इस्तेमाल करें, जब तक कि--host_crosstool_top
की जानकारी न दी गई हो. --cpu
के लिए--host_cpu
की वैल्यू का इस्तेमाल करें (डिफ़ॉल्ट:k8
).- अनुरोध कॉन्फ़िगरेशन में बताई गई वैल्यू का इस्तेमाल करें:
--compiler
,--use_ijars
. अगर--host_crosstool_top
का इस्तेमाल किया जाता है, तो होस्ट कॉन्फ़िगरेशन के लिए, क्रॉसटूल मेंdefault_toolchain
को खोजने के लिए--host_cpu
की वैल्यू का इस्तेमाल किया जाता है (--compiler
को अनदेखा किया जाता है). --javabase
के लिए--host_javabase
की वैल्यू का इस्तेमाल करें--java_toolchain
के लिए--host_java_toolchain
की वैल्यू का इस्तेमाल करें- C++ कोड (
-c opt
) के लिए ऑप्टिमाइज़ किए गए बिल्ड का इस्तेमाल करें. - डीबग करने की कोई जानकारी जनरेट नहीं करें (
--copt=-g0
). - रन किए जा सकने वाले प्रोग्राम और शेयर की गई लाइब्रेरी से डीबग की जानकारी हटाएं (
--strip=always
). - सभी डेरिव्ड फ़ाइलों को किसी खास जगह पर रखें. यह जगह, अनुरोध के किसी भी संभावित कॉन्फ़िगरेशन से अलग होनी चाहिए.
- बिल्डर डेटा के साथ बाइनरी को स्टैंप करने की सुविधा बंद करें (
--embed_*
विकल्प देखें). - अन्य सभी वैल्यू, डिफ़ॉल्ट रूप से सेट रहती हैं.
इंक्रीमेंटल रीबिल्ड को ठीक करना
Bazel प्रोजेक्ट का एक मुख्य लक्ष्य, यह पक्का करना है कि इंक्रीमेंटल रीबिल्ड सही तरीके से हो. पिछले बिल्ड टूल, खास तौर पर Make पर आधारित टूल, इंक्रीमेंटल बिल्ड लागू करने के दौरान कई गलत अनुमान लगाते हैं.
सबसे पहले, फ़ाइलों के टाइमस्टैंप एक ही तरह से बढ़ जाते हैं. हालांकि, यह आम तौर पर होता है, लेकिन इस धारणा को गलत साबित करना बहुत आसान है. किसी फ़ाइल के पुराने वर्शन के साथ सिंक करने पर, उस फ़ाइल में बदलाव करने में लगने वाला समय कम हो जाता है. साथ ही, Make पर आधारित सिस्टम, फ़ाइल को फिर से नहीं बनाएंगे.
आम तौर पर, Make फ़ाइलों में हुए बदलावों का पता लगाता है, लेकिन निर्देशों में हुए बदलावों का पता नहीं लगाता. अगर किसी दिए गए बिल्ड चरण में कंपाइलर को दिए गए विकल्पों में बदलाव किया जाता है, तो Make कंपाइलर को फिर से नहीं चलाया जा सकेगा और make clean
का इस्तेमाल करके, पिछले बिल्ड के अमान्य आउटपुट को मैन्युअल तरीके से खारिज किया जा सकता है.
साथ ही, Make किसी सब-प्रोसेस के आउटपुट फ़ाइल में लिखना शुरू करने के बाद, उस सब-प्रोसेस को बंद नहीं कर पाता. Make का मौजूदा वर्शन काम नहीं करेगा. हालांकि, Make का अगला वर्शन, काट-छांट की गई आउटपुट फ़ाइल को मान्य मान लेगा, क्योंकि यह अपने इनपुट से नई है. साथ ही, इसे फिर से नहीं बनाया जाएगा. इसी तरह, अगर 'बनाएं' प्रोसेस खत्म हो जाती है, तो ऐसी ही स्थिति पैदा हो सकती है.
Bazel, इन और अन्य अनुमान से बचता है. Bazel, पहले किए गए सभी काम का डेटाबेस बनाए रखता है. यह किसी बिल्ड चरण को सिर्फ़ तब छोड़ेगा, जब उसे पता चलेगा कि उस बिल्ड चरण के इनपुट फ़ाइलों (और उनके टाइमस्टैंप) का सेट और उस बिल्ड चरण के कंपाइलेशन कमांड, डेटाबेस में मौजूद किसी एक से पूरी तरह मैच करते हैं. साथ ही, डेटाबेस एंट्री के आउटपुट फ़ाइलों (और उनके टाइमस्टैंप) का सेट, डिस्क पर मौजूद फ़ाइलों के टाइमस्टैंप से पूरी तरह मैच करता है. इनपुट फ़ाइलों या आउटपुट फ़ाइलों या कमांड में कोई भी बदलाव करने पर, बिल्ड चरण फिर से शुरू हो जाएगा.
सही इंक्रीमेंटल बिल्ड का इस्तेमाल करने से, उपयोगकर्ताओं को ये फ़ायदे मिलते हैं: भ्रम की वजह से कम समय बर्बाद होता है. (इसके अलावा, make
clean
का इस्तेमाल करने पर, रीबिल्ड होने में लगने वाला समय भी कम हो जाता है. भले ही, रीबिल्ड करना ज़रूरी हो या पहले से तय किया गया हो.)
एक जैसी सुविधाएं और इंंक्रीमेंटल बिल्ड बनाना
आम तौर पर, हम किसी बिल्ड की स्थिति को एक जैसा तब तय करते हैं, जब उम्मीद के मुताबिक सभी आउटपुट फ़ाइलें मौजूद हों और उनका कॉन्टेंट सही हो. यह कॉन्टेंट, उन्हें बनाने के लिए ज़रूरी चरणों या नियमों के मुताबिक होना चाहिए. किसी सोर्स फ़ाइल में बदलाव करने पर, बिल्ड की स्थिति असमान हो जाती है. यह स्थिति तब तक बनी रहती है, जब तक कि बिल्ड टूल को फिर से चलाकर बिल्ड पूरा नहीं हो जाता. हम इस स्थिति को असमानता मानते हैं, क्योंकि यह सिर्फ़ कुछ समय के लिए होती है और बिल्ड टूल चलाकर पहले की तुलना में एक जैसे नतीजे बनाए जा सकते हैं.
एक और तरह की गड़बड़ी भी होती है, जो नुकसान पहुंचा सकती है: लगातार एक जैसी गड़बड़ी. अगर बिल्ड, एक जैसी स्थिति में नहीं रहता है, तो बिल्ड टूल को बार-बार इस्तेमाल करने से भी बिल्ड एक जैसा नहीं रहता: बिल्ड "स्टक" हो जाता है और आउटपुट गलत रहते हैं. स्थिर और अलग-अलग स्थितियां, Make (और अन्य बिल्ड टूल) के उपयोगकर्ताओं को make clean
टाइप करने की मुख्य वजह हैं.
यह पता लगाना कि बिल्ड टूल इस तरह से काम नहीं कर रहा है और फिर उससे ठीक होना, समय लेने वाला और बहुत परेशान करने वाला हो सकता है.
कॉन्सेप्ट के हिसाब से, एक जैसा बिल्ड पाने का सबसे आसान तरीका यह है कि पिछले सभी बिल्ड आउटपुट को हटाकर, फिर से शुरू करें: हर बिल्ड को क्लीन बिल्ड बनाएं. यह तरीका, शायद रिलीज़ इंजीनियर के अलावा, किसी और के लिए काम का नहीं है. ऐसा इसलिए है, क्योंकि इसमें काफ़ी समय लगता है. इसलिए, यह ज़रूरी है कि बिल्ड टूल, एक जैसी परफ़ॉर्मेंस बनाए रखते हुए, इंक्रीमेंटल बिल्ड कर सके.
इंक्रीमेंटल डिपेंडेंसी का सही विश्लेषण करना मुश्किल है. जैसा कि ऊपर बताया गया है, कई अन्य बिल्ड टूल, इंक्रीमेंटल बिल्ड के दौरान स्थिर और गलत स्टेटस से बचने के लिए खराब तरीके से काम करते हैं. इसके उलट, Bazel इस बात की गारंटी देता है: बगैर किसी बदलाव के, बाइल्ड टूल को इस्तेमाल करने के बाद, बाइल्ड एक जैसा रहेगा. (अगर बिल्ड के दौरान सोर्स फ़ाइलों में बदलाव किया जाता है, तो Basel, मौजूदा बिल्ड के नतीजे को एक जैसा बनाए रखने की कोई गारंटी नहीं देता है. हालांकि, इस बात की गारंटी है कि next बिल्ड के नतीजों से वह फिर से पहले जैसी हो जाएगी.)
सभी गारंटी की तरह ही, इसमें भी कुछ शर्तें होती हैं: Bazel के साथ, स्टेबल और गैर-स्टेबल स्थिति में जाने के कुछ तरीके हैं. हम इस बात की गारंटी नहीं देते कि हम उन समस्याओं की जांच करेंगे जो जान-बूझकर, इंक्रीमेंटल डिपेंडेंसी विश्लेषण में गड़बड़ियां ढूंढने की कोशिश करने से होती हैं. हालांकि, हम बिल्ड टूल के सामान्य या "उचित" इस्तेमाल से होने वाली सभी समस्याओं की जांच करेंगे और उन्हें ठीक करने की पूरी कोशिश करेंगे.
अगर आपको कभी Bazel में स्टेबल स्टेटस में कोई गड़बड़ी दिखती है, तो कृपया गड़बड़ी की शिकायत करें.
सैंडबॉक्स में चलाने की सुविधा
Bazel, सैंडबॉक्स का इस्तेमाल करके यह पक्का करता है कि कार्रवाइयां सही तरीके से और पूरी तरह से पूरी हों. Baज़ल, सैंडबॉक्स में spawns (कम शब्दों में जानकारी देने वाली: कार्रवाइयां) चलाता है. इसमें सिर्फ़ उन फ़ाइलों का कम सेट होता है जिनकी ज़रूरत टूल को अपना काम करने के लिए होती है. फ़िलहाल, सैंडबॉक्सिंग की सुविधा, CONFIG_USER_NS
विकल्प चालू होने पर, Linux 3.12 या इसके बाद के वर्शन पर काम करती है. साथ ही, यह macOS 10.11 या इसके बाद के वर्शन पर भी काम करती है.
अगर आपका सिस्टम सैंडबॉक्सिंग की सुविधा के साथ काम नहीं करता है, तो Bazel आपको चेतावनी देगा. इससे आपको यह पता चलेगा कि बिल्ड के पूरी तरह से सुरक्षित होने की कोई गारंटी नहीं है और होस्ट सिस्टम पर इनका असर पड़ सकता है. इस चेतावनी को बंद करने के लिए, Bazel को --ignore_unsupported_sandboxing
फ़्लैग पास किया जा सकता है.
Google Kubernetes Engine क्लस्टर नोड या Debian जैसे कुछ प्लैटफ़ॉर्म पर, उपयोगकर्ता नेमस्पेस डिफ़ॉल्ट रूप से बंद रहते हैं. ऐसा सुरक्षा से जुड़ी चिंताओं की वजह से किया जाता है. इसकी जांच करने के लिए, /proc/sys/kernel/unprivileged_userns_clone
फ़ाइल देखें: अगर यह मौजूद है और इसमें 0 है, तो sudo sysctl kernel.unprivileged_userns_clone=1
की मदद से उपयोगकर्ता नेमस्पेस चालू किए जा सकते हैं.
कुछ मामलों में, सिस्टम सेटअप की वजह से Bazel सैंडबॉक्स, नियमों को लागू नहीं कर पाता. आम तौर पर, इस समस्या का लक्षण तब दिखता है, जब हमें namespace-sandbox.c:633: execvp(argv[0], argv): No such file or directory
जैसा मैसेज मिलता है.
ऐसे में, --strategy=Genrule=standalone
वाले जनरेटिव नियमों और --spawn_strategy=standalone
वाले अन्य नियमों के लिए, सैंडबॉक्स को बंद करने की कोशिश करें. कृपया हमारे समस्या ट्रैकर पर भी गड़बड़ी की शिकायत करें. साथ ही, यह भी बताएं कि आपने कौनसा Linux डिस्ट्रिब्यूशन इस्तेमाल किया है, ताकि हम इसकी जांच कर सकें और अगली रिलीज़ में इसे ठीक कर सकें.
बिल्ड के चरण
Bazel में, बिल्ड तीन अलग-अलग चरणों में होता है. उपयोगकर्ता के तौर पर, इनके बीच के अंतर को समझने से, बिल्ड को कंट्रोल करने वाले विकल्पों के बारे में अहम जानकारी मिलती है (नीचे देखें).
लोडिंग का चरण
पहली फ़ाइल, लोडिंग होती है. इस दौरान, शुरुआती टारगेट के लिए सभी ज़रूरी बिल्ड फ़ाइलें लोड होती हैं, पार्स की जाती हैं, आकलन की जाती हैं, और कैश मेमोरी में सेव की जाती हैं.
Bazel सर्वर के शुरू होने के बाद, पहले बिल्ड के लिए लोडिंग चरण में आम तौर पर कई सेकंड लगते हैं. ऐसा इसलिए होता है, क्योंकि फ़ाइल सिस्टम से कई BUILD फ़ाइलें लोड की जाती हैं. इसके बाद के बिल्ड में, खास तौर पर अगर कोई BUILD फ़ाइल नहीं बदली है, तो लोडिंग बहुत तेज़ी से होती है.
इस चरण के दौरान रिपोर्ट की गई गड़बड़ियों में ये शामिल हैं: पैकेज नहीं मिला, टारगेट नहीं मिला, BUILD फ़ाइल में लेक्सिकल और व्याकरण से जुड़ी गड़बड़ियां, और आकलन से जुड़ी गड़बड़ियां.
विश्लेषण का चरण
दूसरा चरण, विश्लेषण है. इसमें हर बिल्ड नियम का सेमेटिक विश्लेषण और पुष्टि की जाती है. साथ ही, बिल्ड डिपेंडेंसी ग्राफ़ बनाया जाता है और यह तय किया जाता है कि बिल्ड के हर चरण में क्या काम करना है.
लोड होने की तरह ही, विश्लेषण में पूरी तरह से गणना होने में भी कुछ सेकंड लगते हैं. हालांकि, Bazel एक बिल्ड से अगले बिल्ड तक डिपेंडेंसी ग्राफ़ को कैश मेमोरी में सेव करता है और सिर्फ़ ज़रूरी चीज़ों का फिर से विश्लेषण करता है. इससे, अगर पिछले बिल्ड के बाद पैकेज में कोई बदलाव नहीं हुआ है, तो इंक्रीमेंटल बिल्ड बहुत तेज़ी से हो सकते हैं.
इस चरण में रिपोर्ट की गई गड़बड़ियों में ये शामिल हैं: गलत डिपेंडेंसी, किसी नियम के लिए अमान्य इनपुट, और नियम से जुड़े सभी गड़बड़ी के मैसेज.
लोड होने और विश्लेषण करने की प्रोसेस तेज़ी से होती है, क्योंकि Bazel इस चरण में फ़ाइल के ग़ैर-ज़रूरी I/O से बचता है. साथ ही, यह सिर्फ़ BUILD फ़ाइलों को पढ़ता है, ताकि यह तय किया जा सके कि क्या करना है. यह डिज़ाइन के हिसाब से है. इससे Bazel, विश्लेषण टूल के लिए एक अच्छा फ़ाउंडेशन बन जाता है. जैसे, Bazel का क्वेरी कमांड, जो लोड करने के फ़ेज़ के ऊपर लागू किया जाता है.
लागू करने का फ़ेज़
बिल्ड का तीसरा और आखिरी चरण, एक्सीक्यूशन है. इस चरण से यह पक्का होता है कि बिल्ड के हर चरण के आउटपुट, उसके इनपुट से मेल खाते हों. साथ ही, ज़रूरत के मुताबिक कंपाइलेशन/लिंक करने/वगैरह. इस चरण में, बिल्ड का ज़्यादातर समय बीतता है. बड़े बिल्ड के लिए, इसमें कुछ सेकंड से लेकर एक घंटे से ज़्यादा समय लग सकता है. इस चरण के दौरान, सोर्स फ़ाइलें मौजूद न होना, किसी बिल्ड ऐक्शन से चलाए गए टूल में गड़बड़ियां होना या किसी टूल से आउटपुट का उम्मीद के मुताबिक सेट न बनना जैसी गड़बड़ियां रिपोर्ट की जाती हैं.