Bazel क्वेरी का संदर्भ

7.3 · 7.2 · 7.1 · 7.0 · 6.5

यह पेज उस Baज़र क्वेरी लैंग्वेज के लिए रेफ़रंस मैन्युअल है जिसे बिल्ड डिपेंडेंसी का विश्लेषण करने के लिए bazel query का इस्तेमाल करते समय इस्तेमाल किया जाता है. इसमें उन आउटपुट फ़ॉर्मैट के बारे में भी बताया गया है जो bazel query पर काम करते हैं.

इस्तेमाल के उदाहरणों के लिए, Bazel क्वेरी का इस्तेमाल करने का तरीका लेख पढ़ें.

क्वेरी का अन्य रेफ़रंस

पोस्ट-लोडिंग फ़ेज़ के टारगेट ग्राफ़ पर चलने वाले query के अलावा, बेज़ल में ऐक्शन ग्राफ़ क्वेरी और कॉन्फ़िगर की जा सकने वाली क्वेरी भी शामिल होती हैं.

ऐक्शन ग्राफ़ की क्वेरी

कार्रवाई ग्राफ़ क्वेरी (aquery), विश्लेषण के बाद कॉन्फ़िगर किए गए टारगेट ग्राफ़ पर काम करती है. इसमें कार्रवाइयां, आर्टफ़ैक्ट, और उनके संबंधों के बारे में जानकारी मिलती है. aquery का इस्तेमाल करना तब फ़ायदेमंद होता है, जब कॉन्फ़िगर किए गए टारगेट ग्राफ़ से जनरेट की गई कार्रवाइयों/आर्टफ़ैक्ट की प्रॉपर्टी में आपकी दिलचस्पी हो. उदाहरण के लिए, असल में चलाए जाने वाले निर्देश और उनके इनपुट, आउटपुट, और याद रखने के तरीके.

ज़्यादा जानकारी के लिए, क्वेरी का रेफ़रंस देखें.

कॉन्फ़िगर की जा सकने वाली क्वेरी

पारंपरिक Bazel क्वेरी, पोस्ट-लोडिंग फ़ेज़ के टारगेट ग्राफ़ पर चलती है. इसलिए, इसमें कॉन्फ़िगरेशन और उनसे जुड़े कॉन्सेप्ट का कोई कॉन्सेप्ट नहीं होता. ध्यान दें, यह चुनिंदा स्टेटमेंट का सही तरीके से समाधान नहीं करता. इसके बजाय, यह चुनने के सभी संभावित रिज़ॉल्यूशन दिखाता है. हालांकि, कॉन्फ़िगर किया जा सकने वाला क्वेरी एनवायरमेंट cquery, कॉन्फ़िगरेशन को सही तरीके से मैनेज करता है, लेकिन इस ओरिजनल क्वेरी की सभी सुविधाएं नहीं देता है.

ज़्यादा जानकारी के लिए, cquery रेफ़रंस देखें.

उदाहरण

लोग bazel query का इस्तेमाल कैसे करते हैं? यहां कुछ सामान्य उदाहरण दिए गए हैं:

//foo ट्री, //bar/baz पर क्यों निर्भर करता है? कोई पाथ दिखाएं:

somepath(foo/..., //bar/baz:all)

सभी foo टेस्ट किन C++ लाइब्रेरी पर निर्भर करते हैं, जिन पर foo_bin टारगेट निर्भर नहीं करता?

kind("cc_library", deps(kind(".*test rule", foo/...)) except deps(//foo:foo_bin))

टोकन: लेक्सिकल सिंटैक्स

क्वेरी लैंग्वेज में एक्सप्रेशन इन टोकन से बने होते हैं:

  • कीवर्ड, जैसे let. कीवर्ड, भाषा के रिज़र्व किए गए शब्द होते हैं. इनके बारे में यहां बताया गया है. कीवर्ड का पूरा सेट यह है:

  • शब्द, जैसे कि "foo/..." या ".*test rule" या "//bar/baz:all". अगर वर्ण क्रम को "कोट" किया गया है (शुरुआत और आखिर में सिंगल कोट ' या डबल कोट " है), तो यह एक शब्द है. अगर किसी वर्ण के क्रम को कोट नहीं किया गया है, तो उसे अब भी शब्द के तौर पर पार्स किया जा सकता है. बिना कोट वाले शब्द, वर्णों के क्रम होते हैं जिन्हें वर्णमाला के वर्णों A-Za-z, 0 से 9 तक के अंकों, और */@.-_:$~[] से लिया गया है. जैसे, तारे का निशान, फ़ॉरवर्ड स्लैश, एट, पीरियड, हाइफ़न, अंडरस्कोर, कोलन, डॉलर का निशान, टिल्ड, लेफ़्ट स्क्वेयर ब्रेस, राइट स्क्वेयर ब्रेस). हालांकि, हो सकता है कि बिना कोटेशन मार्क वाले शब्दों के शुरू में हाइफ़न - या तारे का निशान * न हो. हालांकि, मिलते-जुलते टारगेट के नाम उन वर्णों से शुरू हो सकते हैं. डेटा स्टोर करने की बाहरी जगहों को रेफ़र करने वाले लेबल को आसानी से मैनेज करने के लिए बनाए गए एक खास नियम के तौर पर, @@ से शुरू होने वाले बिना कोट वाले शब्दों में + वर्ण हो सकते हैं.

    बिना कोट किए गए शब्दों में, प्लस साइन + या बराबर के साइन = भी शामिल नहीं किए जा सकते. भले ही, टारगेट के नामों में इन वर्णों का इस्तेमाल किया जा सकता है. क्वेरी एक्सप्रेशन जनरेट करने वाला कोड लिखते समय, टारगेट के नाम को कोट में लिखना चाहिए.

    उपयोगकर्ताओं से मिली वैल्यू से बेज़ल क्वेरी एक्सप्रेशन बनाने वाली स्क्रिप्ट लिखते समय, कोट करना ज़रूरी है.

     //foo:bar+wiz    # WRONG: scanned as //foo:bar + wiz.
     //foo:bar=wiz    # WRONG: scanned as //foo:bar = wiz.
     "//foo:bar+wiz"  # OK.
     "//foo:bar=wiz"  # OK.
    

    ध्यान दें कि यह कोट उस कोटेशन के अलावा है जिसकी ज़रूरत आपके शेल के लिए हो सकती है, जैसे कि:

    bazel query ' "//foo:bar=wiz" '   # single-quotes for shell, double-quotes for Bazel.

    कोट किए गए कीवर्ड और ऑपरेटर को सामान्य शब्दों के तौर पर माना जाता है. उदाहरण के लिए, some एक कीवर्ड है, लेकिन "कुछ" एक शब्द है. foo और "foo", दोनों शब्द हैं.

    हालांकि, टारगेट के नामों में सिंगल या डबल कोट का इस्तेमाल करते समय सावधानी बरतें. एक या एक से ज़्यादा टारगेट के नाम को कोट करते समय, सिर्फ़ एक तरह के कोट का इस्तेमाल करें. जैसे, सभी सिंगल कोट या सभी डबल कोट.

    यहां Java क्वेरी स्ट्रिंग के उदाहरण दिए गए हैं:

      'a"'a'         # WRONG: Error message: unclosed quotation.
      "a'"a"         # WRONG: Error message: unclosed quotation.
      '"a" + 'a''    # WRONG: Error message: unexpected token 'a' after query expression '"a" + '
      "'a' + "a""    # WRONG: Error message: unexpected token 'a' after query expression ''a' + '
      "a'a"          # OK.
      'a"a'          # OK.
      '"a" + "a"'    # OK
      "'a' + 'a'"    # OK
    

    हमने यह सिंटैक्स इसलिए चुना है, ताकि ज़्यादातर मामलों में कोट मार्क की ज़रूरत न पड़े. ".*test rule" के (असामान्य) उदाहरण के लिए कोटेशन की ज़रूरत होती है: यह पीरियड से शुरू होता है और इसमें स्पेस होता है. "cc_library" को कोट करने की ज़रूरत नहीं है, लेकिन इससे कोई नुकसान नहीं होता.

  • विराम चिह्न, जैसे कि ब्रैकेट (), पीरियड ., और कॉमा ,. विराम चिह्न वाले शब्दों (ऊपर दिए गए अपवादों को छोड़कर) को कोट किया जाना चाहिए.

कोट किए गए शब्द के बाहर मौजूद खाली जगह को अनदेखा कर दिया जाता है.

बेज़ेल क्वेरी लैंग्वेज के कॉन्सेप्ट

बेज़ेल क्वेरी लैंग्वेज, एक्सप्रेशन की भाषा है. हर एक्सप्रेशन, टारगेट के कुछ हद तक क्रम में लगाए गए सेट या टारगेट के ग्राफ़ (डीएजी) के तौर पर दिखता है. सिर्फ़ यही डेटाटाइप है.

सेट और ग्राफ़, एक ही डेटाटाइप का रेफ़रंस देते हैं. हालांकि, ये इसके अलग-अलग पहलुओं पर ज़ोर देते हैं. उदाहरण के लिए:

  • सेट: टारगेट का कुछ हिस्सा क्रम में नहीं है.
  • ग्राफ़: टारगेट का आंशिक क्रम अहम है.

डिपेंडेंसी ग्राफ़ में साइकल

बिल्ड डिपेंडेंसी ग्राफ़, ऐसाइकल होने चाहिए.

क्वेरी भाषा में इस्तेमाल किए जाने वाले एल्गोरिदम, असाइकलिक ग्राफ़ में इस्तेमाल करने के लिए हैं. हालांकि, ये साइकल के लिए भी बेहतर हैं. साइकल के इस्तेमाल के बारे में जानकारी नहीं दी गई है और इस पर भरोसा नहीं किया जाना चाहिए.

इंप्लिसिट डिपेंडेंसी

BUILD फ़ाइलों में साफ़ तौर पर बताई गई डिपेंडेंसी के साथ-साथ, Bazu, नियमों में एक और इंप्लिसिट डिपेंडेंसी जोड़ता है. उदाहरण के लिए, हर Java नियम, JavaBuilder पर निर्भर करता है. इंप्लिसिट डिपेंडेंसी $ से शुरू होने वाले एट्रिब्यूट का इस्तेमाल करके बनाई जाती हैं और BUILD फ़ाइलों में इन्हें ओवरराइड नहीं किया जा सकता.

डिफ़ॉल्ट रूप से, bazel query क्वेरी के नतीजे का हिसाब लगाते समय, डिपेंडेंसी को ध्यान में रखता है. इस व्यवहार को --[no]implicit_deps विकल्प से बदला जा सकता है. ध्यान दें कि क्वेरी, कॉन्फ़िगरेशन पर विचार नहीं करती है, इसलिए संभावित टूलचेन पर कभी विचार नहीं किया जाता.

आवाज़

बेज़ल क्वेरी लैंग्वेज एक्सप्रेशन, बिल्ड डिपेंडेंसी ग्राफ़ पर ऑपरेट होते हैं. यह ऐसा ग्राफ़ होता है जो सभी BUILD फ़ाइलों में, सभी नियमों के एलान के ज़रिए सीधे तौर पर तय किया जाता है. यह समझना ज़रूरी है कि यह ग्राफ़ कुछ हद तक अस्पष्ट है. इसमें, किसी बिल्ड के सभी चरणों को पूरा करने का तरीका पूरी तरह से नहीं बताया गया है. बाइल्ड करने के लिए, कॉन्फ़िगरेशन भी ज़रूरी है. ज़्यादा जानकारी के लिए, उपयोगकर्ता गाइड का कॉन्फ़िगरेशन सेक्शन देखें.

Bazel क्वेरी भाषा में किसी एक्सप्रेशन का आकलन करने का नतीजा, सभी कॉन्फ़िगरेशन के लिए सही होता है. इसका मतलब है कि यह ज़्यादा अनुमानित हो सकता है और सटीक नहीं हो सकता. अगर आप बिल्ड के दौरान ज़रूरी सभी सोर्स फ़ाइलों के सेट का कंप्यूट करने के लिए क्वेरी टूल का इस्तेमाल करते हैं, तो यह असल में ज़रूरत से ज़्यादा रिपोर्ट कर सकता है क्योंकि, उदाहरण के लिए, क्वेरी टूल में मैसेज का अनुवाद करने के लिए ज़रूरी सभी फ़ाइलें शामिल होंगी, भले ही आप अपने बिल्ड में उस सुविधा का इस्तेमाल नहीं करना चाहते हों.

ग्राफ़ के क्रम को बनाए रखने के बारे में जानकारी

ऑपरेशन, अपनी सब-एक्सप्रेशन से इनहेरिट की गई, ऑर्डर से जुड़ी सभी पाबंदियों को बनाए रखते हैं. इसे "आंशिक क्रम के संरक्षण का नियम" जैसा समझा जा सकता है. उदाहरण के लिए: अगर किसी टारगेट की डिपेंडेंसी के ट्रांज़िशन क्लोज़र का पता लगाने के लिए क्वेरी जारी की जाती है, तो नतीजे के सेट को डिपेंडेंसी ग्राफ़ के हिसाब से क्रम में लगाया जाता है. अगर आपने ऐसा फ़िल्टर किया है जो सिर्फ़ file टाइप के टारगेट को शामिल करने के लिए सेट किया गया है, तो नतीजे के तौर पर बने सबसेट में, टारगेट के हर पेयर के बीच एक ही ट्रांज़िव पार्शियल ऑर्डर रिलेशन होता है. भले ही, इनमें से कोई भी पेयर ओरिजनल ग्राफ़ में सीधे तौर पर कनेक्ट न हो. (बिल्ड डिपेंडेंसी ग्राफ़ में, फ़ाइल-फ़ाइल एज नहीं हैं).

हालांकि, सभी ऑपरेटर ऑर्डर को सेव करते हैं, लेकिन कुछ कार्रवाइयां, जैसे कि सेट ऑपरेशन अपने-आप में सेट की गई किसी भी ऑर्डर कंस्ट्रेंट को पेश नहीं करती हैं. इस एक्सप्रेशन का इस्तेमाल करें:

deps(x) union y

फ़ाइनल नतीजे के क्रम में, सब-एक्सप्रेशन की सभी क्रम से जुड़ी पाबंदियों को बनाए रखा जाता है. इसका मतलब है कि x की सभी ट्रांसीटिव डिपेंडेंसी, एक-दूसरे के हिसाब से सही क्रम में होती हैं. हालांकि, क्वेरी से इस बात की कोई गारंटी नहीं मिलती कि y में टारगेट के क्रम और y में मौजूद टारगेट के मुकाबले deps(x) में टारगेट का क्रम क्या है. हालांकि, y में मौजूद टारगेट के क्रम, y में मौजूद हैं, जो deps(x) में भी होंगे.

ऑर्डर करने की सीमाएं लागू करने वाले ऑपरेटर में ये शामिल हैं: allpaths, deps, rdeps, somepath, और टारगेट पैटर्न वाइल्डकार्ड package:*, dir/... वगैरह.

Sky क्वेरी

स्काई क्वेरी, क्वेरी का एक मोड है. यह किसी तय यूनिवर्स स्कोप पर काम करता है.

खास फ़ंक्शन, सिर्फ़ SkyQuery में उपलब्ध हैं

स्काई क्वेरी मोड में अन्य क्वेरी फ़ंक्शन allrdeps और rbuildfiles भी हैं. ये फ़ंक्शन पूरे यूनिवर्स स्कोप पर ऑपरेट करते हैं (इस वजह से, सामान्य क्वेरी के लिए इनका कोई मतलब नहीं होता).

यूनिवर्स का स्कोप तय करना

स्काई क्वेरी मोड को इन दो फ़्लैग को पास करके चालू किया जाता है: (--universe_scope या --infer_universe_scope) और --order_output=no. --universe_scope=<target_pattern1>,...,<target_patternN>, क्वेरी को टारगेट पैटर्न के ज़रिए तय किए गए टारगेट पैटर्न के ट्रांज़िशन क्लोज़र को पहले से लोड करने के लिए कहता है. यह टारगेट, जोड़ने और घटाने वाले, दोनों तरह के हो सकते हैं. इसके बाद, सभी क्वेरी का आकलन इस "दायरे" में किया जाता है. खास तौर पर, allrdeps और rbuildfiles ऑपरेटर सिर्फ़ इस स्कोप से नतीजे दिखाते हैं. --infer_universe_scope, Bazel को क्वेरी एक्सप्रेशन से --universe_scope के लिए वैल्यू का अनुमान लगाने के लिए कहता है. अनुमानित वैल्यू, क्वेरी एक्सप्रेशन में मौजूद यूनीक टारगेट पैटर्न की सूची है. हालांकि, हो सकता है कि यह आपकी पसंद न हो. उदाहरण के लिए:

bazel query --infer_universe_scope --order_output=no "allrdeps(//my:target)"

इस क्वेरी एक्सप्रेशन में यूनीक टारगेट पैटर्न की सूची ["//my:target"] है. इसलिए, Bazel इसे कॉल के तौर पर इस्तेमाल करता है:

bazel query --universe_scope=//my:target --order_output=no "allrdeps(//my:target)"

हालांकि, --universe_scope के साथ उस क्वेरी का नतीजा सिर्फ़ //my:target होता है. //my:target की रिवर्स डिपेंडेंसी में से कोई भी यूनिवर्स में मौजूद नहीं है! दूसरी ओर, इन बातों का ध्यान रखें:

bazel query --infer_universe_scope --order_output=no "tests(//a/... + b/...) intersect allrdeps(siblings(rbuildfiles(my/starlark/file.bzl)))"

यह एक काम की क्वेरी है, जो कुछ डायरेक्ट्री में मौजूद tests टारगेट के एक्सपैंशन में, टेस्ट टारगेट को कैलकुलेट करने की कोशिश करती है. ये डायरेक्ट्री, अस्थायी तौर पर उन टारगेट पर निर्भर होती हैं जिनकी डेफ़िनिशन में किसी .bzl फ़ाइल का इस्तेमाल किया गया है. यहां, --infer_universe_scope एक सुविधा है, खासकर उस मामले में जहां --universe_scope का विकल्प चुनने पर आपको क्वेरी एक्सप्रेशन को खुद पार्स करना होगा.

इसलिए, यूनिवर्स के स्कोप वाले allrdeps और rbuildfiles जैसे ऑपरेटर ऑपरेटर का इस्तेमाल करने वाले क्वेरी एक्सप्रेशन के लिए, --infer_universe_scope का इस्तेमाल सिर्फ़ तब करें, जब यह आपके काम के मुताबिक हो.

डिफ़ॉल्ट क्वेरी की तुलना में, स्काई क्वेरी के कुछ फ़ायदे और नुकसान हैं. इसका मुख्य नुकसान यह है कि यह अपने आउटपुट को ग्राफ़ के क्रम के हिसाब से क्रम में नहीं लगा सकता. इसलिए, कुछ आउटपुट फ़ॉर्मैट इस्तेमाल करने की अनुमति नहीं है. इसके फ़ायदे यह हैं कि इसमें दो ऑपरेटर (allrdeps और rbuildfiles) उपलब्ध होते हैं, जो डिफ़ॉल्ट क्वेरी में उपलब्ध नहीं होते. साथ ही, Sky Query, नया ग्राफ़ बनाने के बजाय, Skyframe ग्राफ़ का विश्लेषण करके अपना काम करती है. डिफ़ॉल्ट तौर पर, ऐसा नहीं किया जाता. इसलिए, कुछ मामलों में यह ज़्यादा तेज़ी से काम करता है और कम मेमोरी का इस्तेमाल करता है.

एक्सप्रेशन: व्याकरण के सिंटैक्स और सिमेंटिक्स

यह बेज़ल क्वेरी लैंग्वेज का व्याकरण है, जिसकी जानकारी ईबीएनएफ़ नोटेशन में दी गई है:

expr ::= word
       | let name = expr in expr
       | (expr)
       | expr intersect expr
       | expr ^ expr
       | expr union expr
       | expr + expr
       | expr except expr
       | expr - expr
       | set(word *)
       | word '(' int | word | expr ... ')'

इन सेक्शन में, इस व्याकरण के हर प्रोडक्शन के बारे में बताया गया है.

टारगेट पैटर्न

expr ::= word

सिंटैक्स के हिसाब से, टारगेट पैटर्न सिर्फ़ एक शब्द होता है. इसे टारगेट के (बिना क्रम वाला) सेट माना जाता है. सबसे आसान टारगेट पैटर्न एक लेबल होता है, जो किसी एक टारगेट (फ़ाइल या नियम) की पहचान करता है. उदाहरण के लिए, टारगेट पैटर्न //foo:bar का आकलन, एक एलिमेंट, टारगेट, bar नियम वाले सेट में किया जाता है.

टारगेट पैटर्न, पैकेज और टारगेट के ऊपर वाइल्डकार्ड शामिल करने के लिए, लेबल को सामान्य बनाते हैं. उदाहरण के लिए, foo/...:all (या सिर्फ़ foo/...) एक टारगेट पैटर्न है, जो foo डायरेक्ट्री के नीचे हर पैकेज में बार-बार लागू होने वाले सभी नियम वाले सेट का आकलन करता है. bar/baz:all एक टारगेट पैटर्न है, जो bar/baz पैकेज में मौजूद सभी नियमों वाले सेट का आकलन करता है, न कि इसके सबपैकेज.

इसी तरह, foo/...:* एक टारगेट पैटर्न है, जो foo डायरेक्ट्री के नीचे मौजूद हर पैकेज में, सभी टारगेट (नियम और फ़ाइलें) वाले सेट का आकलन करता है. bar/baz:*, bar/baz पैकेज के सभी टारगेट वाले सेट का आकलन करता है, लेकिन इसके सब-पैकेज का नहीं.

:* वाइल्डकार्ड, फ़ाइलों के साथ-साथ नियमों से भी मैच करता है. इसलिए, अक्सर क्वेरी के लिए यह :all से ज़्यादा मददगार होता है. इसके उलट, :all वाइल्डकार्ड (foo/... जैसे टारगेट पैटर्न में इंप्लिसिट) आम तौर पर बिल्ड के लिए ज़्यादा काम का होता है.

bazel query टारगेट पैटर्न, bazel build बिल्ड टारगेट की तरह ही काम करते हैं. ज़्यादा जानकारी के लिए, टारगेट पैटर्न देखें या bazel help target-syntax टाइप करें.

टारगेट पैटर्न का आकलन, एक सिंगलटन सेट (लेबल के मामले में) के लिए, कई एलिमेंट वाले सेट (जैसे कि foo/... में हज़ारों एलिमेंट होता है) तक या अगर टारगेट पैटर्न किसी भी टारगेट से मेल नहीं खाता है, तो खाली सेट का आकलन किया जा सकता है.

टारगेट पैटर्न एक्सप्रेशन के नतीजे में मौजूद सभी नोड, एक-दूसरे के हिसाब से सही क्रम में होते हैं. यह क्रम, डिपेंडेंसी रिलेशन के हिसाब से तय होता है. इसलिए, foo:* का नतीजा सिर्फ़ foo पैकेज में मौजूद टारगेट का सेट नहीं है, बल्कि उन टारगेट का ग्राफ़ भी है. (नतीजों के नोड के अन्य नोड के मुकाबले, क्रम से होने की कोई गारंटी नहीं दी जाती.) ज़्यादा जानकारी के लिए, ग्राफ़ का क्रम सेक्शन देखें.

वैरिएबल

expr ::= let name = expr1 in expr2
       | $name

Bazel क्वेरी भाषा में, वेरिएबल की परिभाषाएं और उनके रेफ़रंस दिए जा सकते हैं. let एक्सप्रेशन के आकलन का नतीजा expr2 के नतीजे जैसा ही होता है. इसमें वैरिएबल name के सभी फ़्री इंस्टेंस को expr1 की वैल्यू से बदल दिया जाता है.

उदाहरण के लिए, let v = foo/... in allpaths($v, //common) intersect $v, allpaths(foo/...,//common) intersect foo/... के बराबर है.

बंद किए गए let name = ... एक्सप्रेशन के अलावा, किसी दूसरे वैरिएबल रेफ़रंस name के होने पर गड़बड़ी होती है. दूसरे शब्दों में, टॉप-लेवल क्वेरी एक्सप्रेशन में फ़्री वैरिएबल नहीं हो सकते.

ऊपर दिए गए व्याकरण के प्रॉडक्शन में, name word की तरह है. हालांकि, इसमें एक और शर्त है कि यह C प्रोग्रामिंग भाषा में कानूनी आइडेंटिफ़ायर हो. वैरिएबल के रेफ़रंस के आगे "$" वर्ण होना चाहिए.

हर let एक्सप्रेशन सिर्फ़ एक वैरिएबल के बारे में बताता है, लेकिन उन्हें नेस्ट किया जा सकता है.

टारगेट पैटर्न और वैरिएबल के रेफ़रंस, दोनों में सिर्फ़ एक टोकन होता है. यह एक शब्द होता है, जो वाक्य को साफ़ तौर पर समझाने वाला होता है. हालांकि, इसमें कोई मतलब समझने में कोई दिक्कत नहीं होती, क्योंकि वैरिएबल के लिए इस्तेमाल किए जा सकने वाले शब्दों का सबसेट, टारगेट पैटर्न के लिए इस्तेमाल किए जा सकने वाले शब्दों के सबसेट से अलग होता है.

तकनीकी तौर पर, let एक्सप्रेशन से क्वेरी भाषा की जानकारी देने की क्षमता नहीं बढ़ती: भाषा में बताई जा सकने वाली किसी भी क्वेरी को उनके बिना भी बताया जा सकता है. हालांकि, इससे कई क्वेरी को कम शब्दों में समझने में आसानी होती है. साथ ही, इससे क्वेरी का ज़्यादा बेहतर तरीके से आकलन किया जा सकता है.

ब्रैकेट वाले एक्सप्रेशन

expr ::= (expr)

ब्रैकेट में, सब-एक्सप्रेशन को जोड़कर आकलन का क्रम तय किया जाता है. ब्रैकेट में रखे गए व्यंजक का आकलन करने से, आर्ग्युमेंट की वैल्यू का पता चलता है.

बीजगणितीय सेट ऑपरेशन: इंटरसेक्शन, यूनियन, सेट का अंतर

expr ::= expr intersect expr
       | expr ^ expr
       | expr union expr
       | expr + expr
       | expr except expr
       | expr - expr

ये तीन ऑपरेटर अपने आर्ग्युमेंट पर, आम तौर पर सेट ऑपरेशन का इस्तेमाल करते हैं. हर ऑपरेटर के दो फ़ॉर्म होते हैं. पहला, नाम वाला फ़ॉर्म, जैसे कि intersect और दूसरा, सिंबल वाला फ़ॉर्म, जैसे कि ^. दोनों फ़ॉर्म एक जैसे होते हैं और सांकेतिक फ़ॉर्म ज़्यादा तेज़ी से टाइप होते हैं. (साफ़ तौर पर कहा जाए, तो इस पेज के बाकी हिस्से में नॉमिनल फ़ॉर्म का इस्तेमाल किया गया है.)

उदाहरण के लिए,

foo/... except foo/bar/...

foo/... से मेल खाने वाले टारगेट के सेट का मूल्यांकन करता है, लेकिन foo/bar/... से नहीं.

इस तरह की क्वेरी भी लिखी जा सकती है:

foo/... - foo/bar/...

intersect (^) और union (+) ऑपरेशन, कम्यूटेटिव (सिमेट्रिक) होते हैं; except (-) एसिमेट्रिक होता है. पार्सर सभी तीनों ऑपरेटर को लेफ़्ट-असोसिएशन और एक जैसी प्राथमिकता के तौर पर देखता है. इसलिए, हो सकता है कि आप ब्रैकेट का इस्तेमाल करें. उदाहरण के लिए, इनमें से पहले दो एक्सप्रेशन एक जैसे हैं, लेकिन तीसरा नहीं:

x intersect y union z
(x intersect y) union z
x intersect (y union z)

किसी बाहरी सोर्स से टारगेट पढ़ना: सेट

expr ::= set(word *)

set(a b c ...) ऑपरेटर, शून्य या उससे ज़्यादा टारगेट पैटर्न के सेट के यूनियन का पता लगाता है, जिसे खाली सफ़ेद जगह (कॉमा नहीं) से अलग किया जाता है.

Bourne shell की $(...) सुविधा के साथ, set() एक क्वेरी के नतीजों को सामान्य टेक्स्ट फ़ाइल में सेव करने का तरीका उपलब्ध कराता है. साथ ही, अन्य प्रोग्राम (जैसे, स्टैंडर्ड यूनिक्स शेल टूल) का इस्तेमाल करके उस टेक्स्ट फ़ाइल में बदलाव करता है. इसके बाद, नतीजे को क्वेरी टूल में वापस डालता है, ताकि उसे आगे प्रोसेस किया जा सके. उदाहरण के लिए:

bazel query deps(//my:target) --output=label | grep ... | sed ... | awk ... > foo
bazel query "kind(cc_binary, set($(<foo)))"

अगले उदाहरण में, kind(cc_library, deps(//some_dir/foo:main, 5)) की गिनती, awk प्रोग्राम का इस्तेमाल करके maxrank वैल्यू के आधार पर की गई है.

bazel query 'deps(//some_dir/foo:main)' --output maxrank | awk '($1 < 5) { print $2;} ' > foo
bazel query "kind(cc_library, set($(<foo)))"

इन उदाहरणों में, $(<foo), $(cat foo) के लिए शॉर्टहैंड है, लेकिन cat के अलावा किसी और शेल कमांड का भी इस्तेमाल किया जा सकता है—जैसे कि पिछले awk कमांड का.

फ़ंक्शन

expr ::= word '(' int | word | expr ... ')'

क्वेरी भाषा में कई फ़ंक्शन तय किए जाते हैं. फ़ंक्शन का नाम उसके लिए ज़रूरी आर्ग्युमेंट की संख्या और टाइप तय करता है. ये फ़ंक्शन उपलब्ध हैं:

डिपेंडेंसी का ट्रांसिटिव क्लोज़र: deps

expr ::= deps(expr)
       | deps(expr, depth)

deps(x) ऑपरेटर अपने आर्ग्युमेंट सेट x की डिपेंडेंसी के ट्रांज़िटिव क्लोज़ से बने ग्राफ़ का आकलन करता है. उदाहरण के लिए, deps(//foo) की वैल्यू, एक नोड foo पर आधारित डिपेंडेंसी ग्राफ़ है. इसमें उसकी सभी डिपेंडेंसी शामिल हैं. deps(foo/...) की वैल्यू, डिपेंडेंसी ग्राफ़ होती है जिसके रूट foo डायरेक्ट्री के नीचे मौजूद हर पैकेज में मौजूद होते हैं. इस कॉन्टेक्स्ट में, 'डिपेंडेंसी' का मतलब सिर्फ़ नियम और फ़ाइल टारगेट से है. इसलिए, इन टारगेट को बनाने के लिए ज़रूरी BUILD और Starlark फ़ाइलों को यहां शामिल नहीं किया गया है. इसके लिए, आपको buildfiles ऑपरेटर का इस्तेमाल करना चाहिए.

इससे बनने वाला ग्राफ़, डिपेंडेंसी के हिसाब से क्रम में होता है. ज़्यादा जानकारी के लिए, ग्राफ़ ऑर्डर वाला सेक्शन देखें.

deps ऑपरेटर, वैकल्पिक दूसरा आर्ग्युमेंट स्वीकार करता है. यह एक पूर्णांक होता है, जो खोज की गहराई की ऊपरी सीमा तय करता है. इसलिए, deps(foo:*, 0), foo पैकेज में मौजूद सभी टारगेट दिखाता है. वहीं, deps(foo:*, 1) में foo पैकेज के किसी भी टारगेट की ज़रूरी शर्तें शामिल होती हैं. इसके अलावा, deps(foo:*, 2) में deps(foo:*, 1) के नोड से सीधे तौर पर ऐक्सेस किए जा सकने वाले नोड शामिल होते हैं. (ये नंबर, minrank आउटपुट फ़ॉर्मैट में दिखाई गई रैंक के हिसाब से होते हैं.) अगर depth पैरामीटर को शामिल नहीं किया जाता है, तो खोज की कोई सीमा तय नहीं होती है: यह ज़रूरी शर्तों के 'रिफ़्लेक्सिव ट्रांज़िटिव क्लोज़र' का पता लगाता है.

रिवर्स डिपेंडेंसी का ट्रांज़िटिव क्लोज़र: rdeps

expr ::= rdeps(expr, expr)
       | rdeps(expr, expr, depth)

rdeps(u, x) ऑपरेटर, यूनिवर्स सेट u के ट्रांज़िटिव क्लोज़र में आर्ग्युमेंट सेट x की रिवर्स डिपेंडेंसी का आकलन करता है.

इससे मिलने वाले ग्राफ़ को, डिपेंडेंसी रिलेशन के हिसाब से क्रम में लगाया जाता है. ज़्यादा जानकारी के लिए, ग्राफ़ का क्रम वाला सेक्शन देखें.

rdeps ऑपरेटर, तीसरा आर्ग्युमेंट स्वीकार करता है. यह आर्ग्युमेंट ज़रूरी नहीं है. यह एक पूर्णांक होता है, जो खोज की गहराई की ऊपरी सीमा तय करता है. इस ग्राफ़ में, सिर्फ़ ऐसे नोड शामिल होते हैं जो आर्ग्युमेंट सेट में मौजूद किसी भी नोड से तय की गई डीपथ के अंदर हों. इसलिए, rdeps(//foo, //common, 1), //foo के ट्रांज़िटिव क्लोज़र में मौजूद उन सभी नोड का आकलन करता है जो सीधे तौर पर //common पर निर्भर होते हैं. (ये नंबर, minrank आउटपुट फ़ॉर्मैट में दिखाई गई रैंक के हिसाब से होते हैं.) अगर depth पैरामीटर को शामिल नहीं किया जाता है, तो खोज की सीमा नहीं होती.

सभी रिवर्स डिपेंडेंसी का ट्रांज़िटिव क्लोज़र: allrdeps

expr ::= allrdeps(expr)
       | allrdeps(expr, depth)

allrdeps ऑपरेटर, rdeps ऑपरेटर की तरह काम करता है. अंतर सिर्फ़ यह है कि "यूनिवर्स सेट", अलग से तय किए जाने के बजाय, --universe_scope फ़्लैग का आकलन करता है. इसलिए, अगर --universe_scope=//foo/... को पास किया गया है, तो allrdeps(//bar) rdeps(//foo/..., //bar) के बराबर है.

एक ही पैकेज में सीधे रिवर्स डिपेंडेंसी: same_pkg_direct_rdeps

expr ::= same_pkg_direct_rdeps(expr)

same_pkg_direct_rdeps(x) ऑपरेटर उन टारगेट के पूरे सेट का आकलन करता है जो आर्ग्युमेंट सेट में मौजूद टारगेट के पैकेज में मौजूद होते हैं और सीधे उस पर निर्भर होते हैं.

टारगेट के पैकेज से निपटना: सिबलिंग

expr ::= siblings(expr)

siblings(x) ऑपरेटर, उन टारगेट के पूरे सेट का आकलन करता है जो आर्ग्युमेंट सेट में मौजूद टारगेट के पैकेज में होते हैं.

मनमुताबिक विकल्प: कुछ

expr ::= some(expr)
       | some(expr, count )

some(x, k) ऑपरेटर, अपने आर्ग्युमेंट सेट x से ज़्यादा से ज़्यादा k टारगेट चुनता है. साथ ही, सिर्फ़ उन टारगेट वाले सेट का आकलन करता है. पैरामीटर k ज़रूरी नहीं है. अगर यह पैरामीटर मौजूद नहीं है, तो नतीजे के तौर पर एक सिंगलटन सेट होगा, जिसमें सोच-समझकर सिर्फ़ एक टारगेट चुना गया होगा. अगर आर्ग्युमेंट सेट x का साइज़, k से छोटा है, तो पूरा आर्ग्युमेंट सेट x लौटाया जाएगा.

उदाहरण के लिए, some(//foo:main union //bar:baz) एक्सप्रेशन का आकलन एक ऐसे सिंगलटन सेट के रूप में होता है जिसमें //foo:main या //bar:baz शामिल है. हालांकि, इस सेट के बारे में नहीं बताया गया है. some(//foo:main union //bar:baz, 2) या some(//foo:main union //bar:baz, 3) एक्सप्रेशन, //foo:main और //bar:baz, दोनों दिखाता है.

अगर आर्ग्युमेंट एकल है, तो some, आइडेंटिटी फ़ंक्शन का हिसाब लगाता है: some(//foo:main), //foo:main के बराबर है.

अगर बताया गया आर्ग्युमेंट सेट खाली हो, तो यह गड़बड़ी होती है. जैसे, एक्सप्रेशन some(//foo:main intersect //bar:baz) में.

पाथ ऑपरेटर: somepath, allpaths

expr ::= somepath(expr, expr)
       | allpaths(expr, expr)

somepath(S, E) और allpaths(S, E) ऑपरेटर, टारगेट के दो सेट के बीच पाथ का हिसाब लगाते हैं. दोनों क्वेरी में दो आर्ग्युमेंट इस्तेमाल किए जाते हैं. पहला, शुरुआती पॉइंट का सेट S और दूसरा, आखिरी पॉइंट का सेट E. somepath कुछ आर्बिट्रेरी पाथ के नोड का ग्राफ़, S में मौजूद टारगेट से E के टारगेट पर दिखाता है; allpaths, S में किसी भी टारगेट के सभी पाथ के नोड के ग्राफ़ को E के किसी भी टारगेट में दिखाता है.

इससे बनने वाले ग्राफ़, डिपेंडेंसी के हिसाब से क्रम में लगाए जाते हैं. ज़्यादा जानकारी के लिए, ग्राफ़ का क्रम सेक्शन देखें.

Somepath
somepath(S1 + S2, E), एक संभावित नतीजा.
Somepath
somepath(S1 + S2, E), एक और संभावित नतीजा.
Allpaths
allpaths(S1 + S2, E)

टारगेट टाइप के हिसाब से फ़िल्टर करना: kind

expr ::= kind(word, expr)

kind(pattern, input) ऑपरेटर, टारगेट के किसी सेट पर फ़िल्टर लागू करता है और उन टारगेट को खारिज कर देता है जो उम्मीद के मुताबिक नहीं हैं. pattern पैरामीटर से पता चलता है कि किस तरह के टारगेट से मैच करना है.

उदाहरण के लिए, BUILD फ़ाइल (पैकेज p के लिए) में तय किए गए चार टारगेट के टाइप, नीचे टेबल में दिखाए गए हैं:

कोड टारगेट प्रकार
        genrule(
            name = "a",
            srcs = ["a.in"],
            outs = ["a.out"],
            cmd = "...",
        )
      
//p:a genrule नियम
//p:a.in सोर्स फ़ाइल
//p:a.out जनरेट की गई फ़ाइल
//p:BUILD सोर्स फ़ाइल

इस तरह, kind("cc_.* rule", foo/...) आकलन करके, foo के नीचे दिए गए सभी cc_library, cc_binary वगैरह और नियम के टारगेट के सेट का आकलन करता है. साथ ही, kind("source file", deps(//foo)) //foo टारगेट के डिपेंडेंसी क्लोज़र में मौजूद सभी सोर्स फ़ाइलों के सेट का आकलन करता है.

pattern आर्ग्युमेंट को कोटेशन में रखने की ज़रूरत अक्सर होती है, क्योंकि इसके बिना, पार्स करने वाला टूल source file और .*_test जैसी कई रेगुलर एक्सप्रेशन को शब्द नहीं मानता.

package group से मैच करने पर, :all पर खत्म होने वाले टारगेट से कोई नतीजा नहीं मिल सकता. इसके बजाय, :all-targets का इस्तेमाल करें.

टारगेट के नाम को फ़िल्टर करना: फ़िल्टर

expr ::= filter(word, expr)

filter(pattern, input) ऑपरेटर, टारगेट के सेट पर एक फ़िल्टर लागू करता है. साथ ही, उन टारगेट को खारिज कर देता है जिनके लेबल (पूरी जानकारी के साथ) पैटर्न से मेल नहीं खाते. यह, इसके इनपुट के सबसेट का आकलन करता है.

पहला तर्क, pattern एक ऐसा शब्द है जिसमें टारगेट के नामों के मुकाबले रेगुलर एक्सप्रेशन को इस्तेमाल किया जाता है. filter एक्सप्रेशन, ऐसे सेट का आकलन करता है जिसमें सभी टारगेट x शामिल होते हैं. ऐसा तब होता है, जब x, सेट input का सदस्य हो और x के लेबल (जैसे कि //foo:bar के सटीक फ़ॉर्म में) में रेगुलर एक्सप्रेशन pattern के लिए, बिना ऐंकर वाला मैच शामिल हो. सभी टारगेट नेम // से शुरू होते हैं. इसलिए, इसका इस्तेमाल ^ रेगुलर एक्सप्रेशन ऐंकर के विकल्प के तौर पर किया जा सकता है.

यह ऑपरेटर, अक्सर intersect ऑपरेटर का ज़्यादा तेज़ और ज़्यादा मज़बूत विकल्प उपलब्ध कराता है. उदाहरण के लिए, //foo:foo टारगेट की सभी bar डिपेंडेंसी देखने के लिए,

deps(//foo) intersect //bar/...

हालांकि, इस स्टेटमेंट के लिए bar ट्री में मौजूद सभी BUILD फ़ाइलों को पार्स करना होगा. यह फ़ाइल धीमी होगी और काम की BUILD फ़ाइलों में गड़बड़ी होने की संभावना होगी. इसके अलावा, यह तरीका भी अपनाया जा सकता है:

filter(//bar, deps(//foo))

यह सुविधा सबसे पहले //foo डिपेंडेंसी के सेट को कैलकुलेट करती है. इसके बाद, सिर्फ़ दिए गए पैटर्न से मिलते-जुलते टारगेट को फ़िल्टर करती है. दूसरे शब्दों में, ऐसे टारगेट को फ़िल्टर किया जाता है जिनके नाम में सबस्ट्रिंग के तौर पर //bar मौजूद होता है.

filter(pattern, expr) ऑपरेटर का एक और आम इस्तेमाल, खास फ़ाइलों को उनके नाम या एक्सटेंशन के हिसाब से फ़िल्टर करना है. उदाहरण के लिए,

filter("\.cc$", deps(//foo))

//foo बनाने के लिए इस्तेमाल की गई सभी .cc फ़ाइलों की सूची मिलेगी.

नियम एट्रिब्यूट को फ़िल्टर करना: attr

expr ::= attr(word, word, expr)

attr(name, pattern, input) ऑपरेटर, टारगेट के किसी सेट पर फ़िल्टर लागू करता है. साथ ही, ऐसे टारगेट को खारिज कर देता है जो नियम नहीं हैं, जिनमें एट्रिब्यूट name तय नहीं किया गया है या जिनमें एट्रिब्यूट की वैल्यू, दिए गए रेगुलर एक्सप्रेशन pattern से मेल नहीं खाती. यह अपने इनपुट के सबसेट का आकलन करता है.

पहला तर्क, name नियम एट्रिब्यूट का नाम है, जिसका मिलान दिए गए रेगुलर एक्सप्रेशन पैटर्न से करना चाहिए. दूसरा तर्क, pattern एट्रिब्यूट की वैल्यू पर एक रेगुलर एक्सप्रेशन है. attr एक्सप्रेशन, ऐसे सेट का आकलन करता है जिसमें सभी टारगेट x हैं. जैसे, x, सेट input का सदस्य है. एक नियम है, जिसकी वैल्यू name है और एट्रिब्यूट की वैल्यू में रेगुलर एक्सप्रेशन pattern के लिए (ऐंकर न किया गया) मैच है. अगर name वैकल्पिक एट्रिब्यूट है और नियम में इसकी साफ़ तौर पर जानकारी नहीं दी गई है, तो तुलना के लिए एट्रिब्यूट की डिफ़ॉल्ट वैल्यू का इस्तेमाल किया जाएगा. उदाहरण के लिए,

attr(linkshared, 0, deps(//foo))

उन सभी //foo डिपेंडेंसी को चुनेगा जिनके लिए लिंक किया गया एट्रिब्यूट (जैसे, cc_binary नियम) सेट करने की अनुमति है. साथ ही, यह एट्रिब्यूट या तो साफ़ तौर पर 0 पर सेट होगा या इसे बिल्कुल सेट नहीं किया जाएगा, लेकिन डिफ़ॉल्ट वैल्यू 0 होगी (जैसे, cc_binary नियमों के लिए).

सूची वाले एट्रिब्यूट (जैसे, srcs, data वगैरह) को [value<sub>1</sub>, ..., value<sub>n</sub>] फ़ॉर्मैट की स्ट्रिंग में बदल दिया जाता है. यह [ ब्रैकेट से शुरू होता है और ] ब्रैकेट पर खत्म होता है. साथ ही, एक से ज़्यादा वैल्यू को अलग करने के लिए, "," (कॉमा, स्पेस) का इस्तेमाल किया जाता है. लेबल को स्ट्रिंग में बदलने के लिए, उसी लेबल का इस्तेमाल किया जाता है. उदाहरण के लिए, एट्रिब्यूट deps=[":foo", "//otherpkg:bar", "wiz"] को [//thispkg:foo, //otherpkg:bar, //thispkg:wiz] स्ट्रिंग में बदल दिया जाएगा. ब्रैकेट हमेशा मौजूद होते हैं. इसलिए, खाली सूची में मैच करने के लिए, स्ट्रिंग वैल्यू [] का इस्तेमाल किया जाएगा. उदाहरण के लिए,

attr("srcs", "\[\]", deps(//foo))

//foo डिपेंडेंसी में से उन सभी नियमों को चुनेगा जिनका srcs एट्रिब्यूट खाली है, जबकि

attr("data", ".{3,}", deps(//foo))

//foo डिपेंडेंसी में से उन सभी नियमों को चुनेगा जो data एट्रिब्यूट में कम से कम एक वैल्यू तय करते हैं. // और : की वजह से, हर लेबल कम से कम तीन वर्णों का होता है.

सूची वाले एट्रिब्यूट में, किसी खास value वाली //foo डिपेंडेंसी के बीच सभी नियम चुनने के लिए,

attr("tags", "[\[ ]value[,\]]", deps(//foo))

यह इसलिए काम करता है, क्योंकि value से पहले [ या स्पेस होगा और value के बाद कॉमा या ] होगा.

नियम के दिखने की सेटिंग: दिख रहा है

expr ::= visible(expr, expr)

visible(predicate, input) ऑपरेटर, टारगेट के सेट पर फ़िल्टर लागू करता है और टारगेट को दिखाए बिना, उन्हें खारिज कर देता है.

पहला तर्क, predicate, टारगेट का एक ऐसा सेट है जो आउटपुट में मौजूद सभी टारगेट को दिखनी चाहिए. visible एक्सप्रेशन, ऐसे सेट का आकलन करता है जिसमें सभी टारगेट x शामिल होते हैं. जैसे, x input सेट का सदस्य होता है और predicate में मौजूद सभी टारगेट y के लिए, x y को दिखता है. उदाहरण के लिए:

visible(//foo, //bar:*)

पैकेज //bar में उन सभी टारगेट को चुनेगा जिन पर //foo दिखने की पाबंदियों का उल्लंघन किए बिना निर्भर कर सकता है.

टाइप लेबल के नियम एट्रिब्यूट का आकलन: लेबल

expr ::= labels(word, expr)

labels(attr_name, inputs) ऑपरेटर, सेट inputs के किसी नियम में "लेबल" या "लेबल की सूची" टाइप के एट्रिब्यूट attr_name में बताए गए टारगेट का सेट दिखाता है.

उदाहरण के लिए, labels(srcs, //foo), //foo नियम के srcs एट्रिब्यूट में दिखने वाले टारगेट का सेट दिखाता है. अगर inputs सेट में srcs एट्रिब्यूट वाले एक से ज़्यादा नियम हैं, तो उनके srcs का यूनियन दिखाया जाता है.

Test_suites को बड़ा और फ़िल्टर करें: टेस्ट

expr ::= tests(expr)

tests(x) ऑपरेटर, सेट x में सभी जांच के नियमों का सेट दिखाता है. इस सुविधा में, test_suite के उन नियमों को अलग-अलग टेस्ट के सेट में बड़ा किया जाता है जिनके बारे में वे जानकारी देते हैं. साथ ही, यह tag और size के हिसाब से फ़िल्टर लागू करता है.

डिफ़ॉल्ट रूप से, क्वेरी का आकलन करने से test_suite के सभी नियमों में मौजूद ऐसे टारगेट को अनदेखा कर दिया जाता है जो जांच के दायरे में नहीं आते. --strict_test_suite विकल्प की मदद से, इसे गड़बड़ियों में बदला जा सकता है.

उदाहरण के लिए, kind(test, foo:*) क्वेरी में foo पैकेज में मौजूद सभी *_test और test_suite नियम शामिल हैं. सभी नतीजे, foo पैकेज के सदस्य होते हैं. वहीं दूसरी ओर, क्वेरी tests(foo:*), उन सभी अलग-अलग टेस्ट को दिखाएगी जिन्हें bazel test foo:* लागू करेगा: इसमें अन्य पैकेज से जुड़े ऐसे टेस्ट शामिल हो सकते हैं जिनका रेफ़रंस सीधे तौर पर या किसी अन्य तरीके से test_suite के नियमों के ज़रिए दिया गया है.

पैकेज की परिभाषा वाली फ़ाइलें: बिल्ड फ़ाइलें

expr ::= buildfiles(expr)

buildfiles(x) ऑपरेटर, उन फ़ाइलों का सेट दिखाता है जो सेट x में हर टारगेट के पैकेज तय करते हैं. दूसरे शब्दों में, हर पैकेज के लिए, उसकी BUILD फ़ाइल के साथ-साथ load के ज़रिए रेफ़र की गई सभी .bzl फ़ाइलें. ध्यान दें कि यह उन पैकेज की BUILD फ़ाइलें भी दिखाता है जिनमें ये load वाली फ़ाइलें शामिल हैं.

आम तौर पर, इस ऑपरेटर का इस्तेमाल यह तय करते समय किया जाता है कि कोई खास टारगेट बनाने के लिए किन फ़ाइलों या पैकेज की ज़रूरत है. ऐसा अक्सर नीचे दिए गए --output package विकल्प के साथ किया जाता है. उदाहरण के लिए,

bazel query 'buildfiles(deps(//foo))' --output package

उन सभी पैकेज का सेट देता है जिन पर //foo ट्रांज़िट रूप से निर्भर होता है.

पैकेज के बारे में बताने वाली फ़ाइलें: rbuildfiles

expr ::= rbuildfiles(word, ...)

rbuildfiles ऑपरेटर, पाथ फ़्रैगमेंट की कॉमा-सेपरेटेड लिस्ट लेता है और BUILD फ़ाइलों का वह सेट दिखाता है जो इन पाथ फ़्रैगमेंट पर ट्रांज़िट के तौर पर निर्भर करता है. उदाहरण के लिए, अगर //foo एक पैकेज है, तो rbuildfiles(foo/BUILD), //foo:BUILD टारगेट दिखाएगा. अगर foo/BUILD फ़ाइल में load('//bar:file.bzl'... मौजूद है, तो rbuildfiles(bar/file.bzl) //foo:BUILD टारगेट के साथ-साथ //bar:file.bzl को लोड करने वाली अन्य BUILD फ़ाइलों के टारगेट दिखाएगा

rbuildfiles ऑपरेटर का स्कोप, --universe_scope फ़्लैग में बताया गया यूनिवर्स है. ऐसी फ़ाइलें जो सीधे तौर पर BUILD फ़ाइलों और .bzl फ़ाइलों से जुड़ी नहीं हैं उनका नतीजों पर कोई असर नहीं पड़ता. उदाहरण के लिए, foo.cc जैसी सोर्स फ़ाइलों को अनदेखा कर दिया जाता है. भले ही, BUILD फ़ाइल में उनका साफ़ तौर पर ज़िक्र किया गया हो. हालांकि, सिमलिंक का इस्तेमाल किया जाता है, ताकि अगर foo/BUILD, bar/BUILD का सिमलिंक हो, तो rbuildfiles(bar/BUILD) के नतीजों में //foo:BUILD शामिल होगा.

rbuildfiles ऑपरेटर, सिद्धांत के मुताबिक buildfiles ऑपरेटर से बिलकुल उलट होता है. हालांकि, नैतिकता में हुए इस बदलाव को एक ही दिशा में ज़्यादा मज़बूत बनाया जा सकता है: rbuildfiles के आउटपुट, buildfiles के इनपुट की तरह ही होते हैं; पहले के आउटपुट में सिर्फ़ BUILD फ़ाइल टारगेट होते हैं और बाद वाले में इस तरह के टारगेट हो सकते हैं. दूसरी दिशा में, कorespondence कमज़ोर है. buildfiles ऑपरेटर के आउटपुट, सभी पैकेज और से जुड़े टारगेट होते हैं.bzl फ़ाइलें, दिए गए इनपुट के लिए ज़रूरी हैं. हालांकि, rbuildfiles ऑपरेटर के इनपुट वे टारगेट नहीं हैं, बल्कि उन टारगेट से जुड़े पाथ फ़्रैगमेंट हैं.

पैकेज के बारे में बताने वाली फ़ाइलें: लोड फ़ाइलें

expr ::= loadfiles(expr)

loadfiles(x) ऑपरेटर, Starlark फ़ाइलों का सेट दिखाता है. ये फ़ाइलें, सेट x में मौजूद हर टारगेट के पैकेज को लोड करने के लिए ज़रूरी होती हैं. दूसरे शब्दों में, यह हर पैकेज के लिए, BUILD फ़ाइलों से रेफ़र की गई .bzl फ़ाइलें दिखाता है.

आउटपुट फ़ॉर्मैट

bazel query से ग्राफ़ जनरेट होता है. आपने कॉन्टेंट, फ़ॉर्मैट, और क्रम तय किया है, ताकि bazel query, --output कमांड-लाइन विकल्प की मदद से, यह ग्राफ़ दिखा सके.

Sky Query का इस्तेमाल करते समय, सिर्फ़ ऐसे आउटपुट फ़ॉर्मैट इस्तेमाल किए जा सकते हैं जो बिना क्रम वाले आउटपुट के साथ काम करते हैं. खास तौर पर, graph, minrank, और maxrank आउटपुट फ़ॉर्मैट का इस्तेमाल करने की अनुमति नहीं है.

कुछ आउटपुट फ़ॉर्मैट में अतिरिक्त विकल्प होते हैं. हर आउटपुट विकल्प का नाम, आउटपुट फ़ॉर्मैट पर लागू होता है. इसलिए, --graph:factored सिर्फ़ तब लागू होता है, जब --output=graph का इस्तेमाल किया जा रहा हो. graph के अलावा किसी दूसरे आउटपुट फ़ॉर्मैट का इस्तेमाल करने पर इसका कोई असर नहीं पड़ता. इसी तरह, --xml:line_numbers सिर्फ़ तब लागू होता है, जब --output=xml का इस्तेमाल किया जा रहा हो.

नतीजों के क्रम के बारे में जानकारी

क्वेरी एक्सप्रेशन हमेशा "ग्राफ़ के क्रम को बनाए रखने के नियम" का पालन करते हैं. हालांकि, नतीजों को प्रज़ेंट करने के लिए, डिपेंडेंसी के क्रम या बिना क्रम के कोई भी तरीका अपनाया जा सकता है. यह नतीजे के सेट में मौजूद टारगेट या क्वेरी को कंप्यूट करने के तरीके पर असर नहीं डालता. इससे सिर्फ़ एसटीडीआउट में नतीजे प्रिंट होने के तरीके पर असर पड़ता है. इसके अलावा, डिपेंडेंसी ऑर्डर में एक जैसे नोड, वर्णमाला के क्रम में हो सकते हैं या नहीं. इस व्यवहार को कंट्रोल करने के लिए, --order_output फ़्लैग का इस्तेमाल किया जा सकता है. (--[no]order_results फ़्लैग में --order_output फ़्लैग की सुविधाओं का एक सबसेट भी शामिल है और यह अब काम नहीं करता.)

इस फ़्लैग का डिफ़ॉल्ट मान auto है, जो लेक्सिकोग्राफ़िकल ऑर्डर में नतीजे को प्रिंट करता है. हालांकि, somepath(a,b) का इस्तेमाल करने पर, नतीजे deps के क्रम में प्रिंट किए जाएंगे.

जब यह फ़्लैग no और --output, build, label, label_kind, location, package, proto या xml में से किसी एक पर सेट हो, तो आउटपुट किसी भी क्रम में प्रिंट किए जाएंगे. आम तौर पर, यह सबसे तेज़ विकल्प होता है. हालांकि, जब --output, graph, minrank या maxrank में से कोई एक हो, तब यह काम नहीं करता: इन फ़ॉर्मैट में, Bazel हमेशा नतीजों को डिपेंडेंसी के क्रम या रैंक के हिसाब से प्रिंट करता है.

जब यह फ़्लैग deps पर सेट होता है, तो Bazel नतीजों को टॉपोलॉजिकल क्रम में प्रिंट करता है. इसका मतलब है कि सबसे पहले डिपेंडेंसी प्रिंट होती हैं. हालांकि, ऐसे नोड जो डिपेंडेंसी ऑर्डर के मुताबिक बिना क्रम के होते हैं (क्योंकि एक से दूसरे पर जाने के लिए कोई पाथ नहीं होता) किसी भी क्रम में प्रिंट किए जा सकते हैं.

जब यह फ़्लैग full पर सेट होता है, तो Bazel नोड को पूरी तरह से तय (कुल) क्रम में प्रिंट करता है. सबसे पहले, सभी नोड वर्णमाला के क्रम में लगाए जाते हैं. इसके बाद, सूची में मौजूद हर नोड का इस्तेमाल, पोस्ट-ऑर्डर डीप-फ़र्स्ट सर्च की शुरुआत के तौर पर किया जाता है. इसमें, ऐसे नोड के आउटगोइंग एज को वर्णमाला के क्रम में ट्रैवर्स किया जाता है जिन्हें अब तक विज़िट नहीं किया गया है. आखिर में, नोड को उस क्रम के उलट प्रिंट किया जाता है जिसमें वे देखे गए थे.

इस क्रम में नोड प्रिंट करने में ज़्यादा समय लग सकता है. इसलिए, इसका इस्तेमाल सिर्फ़ तब किया जाना चाहिए, जब डिटरमिनिज़्म ज़रूरी हो.

टारगेट के सोर्स फ़ॉर्म को उसी तरह प्रिंट करें जैसा वे बिल्ड में दिखेंगे

--output build

इस विकल्प की मदद से, हर टारगेट को वैसे दिखाया जाता है जैसे कि उसे BUILD भाषा में हाथ से लिखा गया हो. सभी वैरिएबल और फ़ंक्शन कॉल (जैसे, glob, मैक्रो) को बड़ा किया जाता है. इससे Starlark मैक्रो के असर को देखने में मदद मिलती है. इसके अलावा, हर लागू नियम में generator_name और/या generator_function वैल्यू दिखती है. साथ ही, उस मैक्रो का नाम भी दिखता है जिसका इस्तेमाल करके लागू नियम बनाया गया है.

आउटपुट में उसी सिंटैक्स का इस्तेमाल होता है जिसका इस्तेमाल BUILD फ़ाइलें करती हैं. हालांकि, इसकी कोई मान्य BUILD फ़ाइल बनाने की गारंटी नहीं है.

--output label

इस विकल्प की मदद से, नतीजों वाले ग्राफ़ में हर टारगेट के नामों (या लेबल) का सेट, हर लाइन में एक लेबल, टॉपोलॉजिकल क्रम में प्रिंट किया जाता है. ऐसा तब तक किया जाता है, जब तक --noorder_results तय नहीं किया जाता. नतीजों के क्रम के बारे में जानकारी देखें. (टोपोलॉजिकल क्रम वह होता है जिसमें कोई ग्राफ़ नोड, अपने सभी उत्तराधिकारियों से पहले दिखता है.) बेशक, ग्राफ़ के कई टोपोलॉजी वाले क्रम हो सकते हैं (रिवर्स पोस्टऑर्डर सिर्फ़ एक होता है); जिस क्रम को चुना जाता है वह तय नहीं किया जाता.

somepath क्वेरी के आउटपुट को प्रिंट करते समय, नोड को प्रिंट करने का क्रम पाथ का क्रम होता है.

चेतावनी: कुछ मामलों में, एक ही लेबल वाले दो अलग-अलग टारगेट हो सकते हैं. उदाहरण के लिए, sh_binary नियम और उसकी एकमात्र (अहम) srcs फ़ाइल, दोनों को foo.sh कहा जा सकता है. अगर किसी क्वेरी के नतीजे में ये दोनों टारगेट शामिल हैं, तो आउटपुट (label फ़ॉर्मैट में) में डुप्लीकेट शामिल होगा. label_kind (नीचे देखें) फ़ॉर्मैट का इस्तेमाल करने पर, फ़र्क़ साफ़ तौर पर दिखता है: दोनों टारगेट का नाम एक ही है, लेकिन एक का टाइप sh_binary rule है और दूसरे का टाइप source file.

--output label_kind

label की तरह, यह आउटपुट फ़ॉर्मैट, नतीजे वाले ग्राफ़ में हर टारगेट के लेबल को स्थान के हिसाब से प्रिंट करता है. हालांकि, यह लेबल से पहले टारगेट के टाइप के मुताबिक होता है.

--output proto

क्वेरी के आउटपुट को QueryResult प्रोटोकॉल बफ़र के तौर पर प्रिंट करता है.

--output streamed_proto

Target प्रोटोकॉल बफ़र की लंबाई के हिसाब से बांटी गई स्ट्रीम को प्रिंट करता है. इससे (i) प्रोटोकॉल बफ़र की साइज़ की सीमाओं के बारे में जानने में मदद मिलती है. ऐसा तब होता है, जब किसी एक QueryResult में फ़िट करने के लिए बहुत ज़्यादा टारगेट हों. इसके अलावा, (ii) तब भी काम किया जा सकता है, जब Baze अब भी आउटपुट दे रहा हो.

--output textproto

--output proto की तरह ही, QueryResult प्रोटोकॉल बफ़र को टेक्स्ट फ़ॉर्मैट में प्रिंट करता है.

--output streamed_jsonproto

--output streamed_proto की तरह ही, यह भी Target प्रोटोकॉल बफ़र की स्ट्रीम को ndjson फ़ॉर्मैट में प्रिंट करता है.

--output minrank --output maxrank

label की तरह ही, minrank और maxrank आउटपुट फ़ॉर्मैट, नतीजे के ग्राफ़ में हर टारगेट के लेबल को प्रिंट करते हैं. हालांकि, ये टॉपोलॉजिकल क्रम में दिखने के बजाय, रैंक के क्रम में दिखते हैं. साथ ही, इनके आगे उनकी रैंक का नंबर दिखता है. इन पर नतीजों के क्रम से जुड़े --[no]order_results फ़्लैग का कोई असर नहीं पड़ता. नतीजों के क्रम के बारे में जानकारी देखें.

इस फ़ॉर्मैट के दो वैरिएंट हैं: minrank हर नोड को रूट नोड से लेकर उसके सबसे छोटे पाथ तक की लंबाई के हिसाब से रैंक करता है. "रूट" नोड (जिनका कोई किनारे नहीं आता) रैंक 0 के हैं, उनके उत्तराधिकारी रैंक 1 के हैं, वगैरह. (हमेशा की तरह, किनारे टारगेट से उसकी ज़रूरी ज़रूरी चीज़ों की ओर इशारा करते हैं: वे टारगेट जिन पर यह निर्भर करता है.)

maxrank, हर नोड को रूट नोड से उस तक के सबसे लंबे पाथ की लंबाई के हिसाब से रैंक करता है. फिर से, "रूट" की रैंक 0 होती है. बाकी सभी नोड की रैंक, अपने सभी पूर्ववर्तियों की रैंक से एक ज़्यादा होती है.

किसी साइकल के सभी नोड को एक जैसा रैंक माना जाता है. (ज़्यादातर ग्राफ़ एक जैसे होते हैं. हालांकि, साइकल एक ही समय पर होते हैं, क्योंकि BUILD फ़ाइलों में गलत साइकल होते हैं.)

इन आउटपुट फ़ॉर्मैट से यह पता चलता है कि कोई ग्राफ़ कितना डीप है. अगर इनका इस्तेमाल deps(x), rdeps(x) या allpaths क्वेरी के नतीजे के लिए किया जाता है, तो रैंक नंबर, x से उस रैंक में मौजूद किसी नोड तक के सबसे छोटे (minrank के साथ) या सबसे लंबे (maxrank के साथ) पाथ की लंबाई के बराबर होता है. maxrank का इस्तेमाल, टारगेट बनाने के लिए ज़रूरी बिल्ड चरणों के सबसे लंबे क्रम का पता लगाने के लिए किया जा सकता है.

उदाहरण के लिए, बाईं ओर मौजूद ग्राफ़ में दाईं ओर वाले आउटपुट दिखते हैं. इसमें --output minrank और --output maxrank दिए गए हैं.

रैंक से बाहर
      minrank

      0 //c:c
      1 //b:b
      1 //a:a
      2 //b:b.cc
      2 //a:a.cc
      
      maxrank

      0 //c:c
      1 //b:b
      2 //a:a
      2 //b:b.cc
      3 //a:a.cc
      
--output location

label_kind की तरह, यह विकल्प नतीजों में मौजूद हर टारगेट के लिए, टारगेट का टाइप और लेबल प्रिंट करता है. हालांकि, इसके पहले एक स्ट्रिंग होती है, जिसमें उस टारगेट की जगह की जानकारी फ़ाइल के नाम और लाइन नंबर के तौर पर दी जाती है. यह फ़ॉर्मैट, grep के आउटपुट जैसा दिखता है. इसलिए, बाद वाले कोड (जैसे कि Emacs या vi) को पार्स करने वाले टूल भी मैच की सीरीज़ में जाने के लिए, क्वेरी आउटपुट का इस्तेमाल कर सकते हैं. इससे बेज़ल क्वेरी टूल को डिपेंडेंसी-ग्राफ़-अवेयर "BUILD फ़ाइलों के लिए ग्रेप" के तौर पर इस्तेमाल किया जा सकता है.

जगह की जानकारी, टारगेट के टाइप के हिसाब से अलग-अलग होती है (कइंड ऑपरेटर के बारे में जानें). नियमों के लिए, BUILD फ़ाइल में नियम के एलान की जगह की जानकारी प्रिंट की जाती है. सोर्स फ़ाइलों के लिए, असल फ़ाइल की पहली लाइन की जगह को प्रिंट किया जाता है. जनरेट की गई फ़ाइल के लिए, उसे जनरेट करने वाले नियम की जगह को प्रिंट किया जाता है. (जनरेट की गई फ़ाइल की जगह की जानकारी का पता लगाने के लिए, क्वेरी टूल में ज़रूरी जानकारी नहीं है. साथ ही, अगर फ़ाइल अभी तक नहीं बनाई गई है, तो हो सकता है कि यह मौजूद न हो.)

--output package

यह विकल्प उन सभी पैकेज का नाम प्रिंट करता है जिनमें नतीजे के सेट का कोई टारगेट शामिल है. नामों को वर्णमाला के क्रम में प्रिंट किया जाता है. डुप्लीकेट नाम शामिल नहीं किए जाते. औपचारिक रूप से, यह लेबल (पैकेज, टारगेट) के सेट से पैकेज पर होने वाला एक अनुमान है.

एक्सटर्नल रिपॉज़िटरी में मौजूद पैकेज को @repo//foo/bar के तौर पर फ़ॉर्मैट किया जाता है, जबकि डेटा स्टोर करने की मुख्य जगह में मौजूद पैकेज को foo/bar के फ़ॉर्मैट में रखा जाता है.

deps(...) क्वेरी के साथ मिलकर, इस आउटपुट विकल्प का इस्तेमाल पैकेज के उस सेट को ढूंढने के लिए किया जा सकता है जिसे तय किए गए टारगेट का सेट बनाने के लिए, चेक आउट करना ज़रूरी है.

नतीजे का ग्राफ़ दिखाना

--output graph

इस विकल्प की मदद से, क्वेरी का नतीजा AT&T GraphViz फ़ॉर्मैट में, डायरेक्टेड ग्राफ़ के तौर पर प्रिंट किया जाता है. यह फ़ॉर्मैट काफ़ी लोकप्रिय है. आम तौर पर, नतीजे को .png या .svg जैसी फ़ाइल में सेव किया जाता है. (अगर आपके वर्कस्टेशन पर dot प्रोग्राम इंस्टॉल नहीं है, तो इसे sudo apt-get install graphviz कमांड का इस्तेमाल करके इंस्टॉल किया जा सकता है.) इस्तेमाल करने के उदाहरण के लिए, नीचे दिए गए उदाहरण वाले सेक्शन को देखें.

यह आउटपुट फ़ॉर्मैट, allpaths, deps या rdeps क्वेरी के लिए खास तौर पर मददगार होता है. इन क्वेरी के नतीजों में, पाथ का एक सेट शामिल होता है. इसे --output label जैसे लीनियर फ़ॉर्मैट में रेंडर करने पर, आसानी से विज़ुअलाइज़ नहीं किया जा सकता.

डिफ़ॉल्ट रूप से, ग्राफ़ को फ़ैक्टर फ़ॉर्म में रेंडर किया जाता है. इसका मतलब है कि एक जैसे टॉपोलॉजी वाले नोड को एक साथ कई लेबल वाले एक नोड में मर्ज कर दिया जाता है. इससे ग्राफ़ ज़्यादा कॉम्पैक्ट और पढ़ने लायक बन जाता है, क्योंकि आम तौर पर नतीजों के ग्राफ़ में बहुत ज़्यादा बार दोहराए जाने वाले पैटर्न होते हैं. उदाहरण के लिए, java_library नियम, एक ही genrule से जनरेट की गई सैकड़ों Java सोर्स फ़ाइलों पर निर्भर हो सकता है. फ़ैक्टर वाले ग्राफ़ में, इन सभी फ़ाइलों को एक ही नोड से दिखाया जाता है. यह व्यवहार --nograph:factored विकल्प से बंद किया जा सकता है.

--graph:node_limit n

यह विकल्प, आउटपुट में ग्राफ़ नोड के लिए लेबल स्ट्रिंग की ज़्यादा से ज़्यादा लंबाई तय करता है. बड़े लेबल छोटे किए जाएंगे; -1 से छोटे किए गए लेबल बंद हो जाते हैं. आम तौर पर, ग्राफ़ को फ़ैक्टर वाले फ़ॉर्म में प्रिंट किया जाता है. इस वजह से, नोड के लेबल बहुत लंबे हो सकते हैं. ग्राफ़विज़ 1024 वर्णों से ज़्यादा के लेबल को हैंडल नहीं कर सकता, जो इस विकल्प की डिफ़ॉल्ट वैल्यू है. इस विकल्प का तब तक कोई असर नहीं पड़ता, जब तक --output=graph का इस्तेमाल नहीं किया जा रहा हो.

--[no]graph:factored

डिफ़ॉल्ट रूप से, ग्राफ़ ऊपर बताए गए तरीके के अनुसार फ़ैक्टर के हिसाब से दिखाए जाते हैं. --nograph:factored तय करने पर, ग्राफ़ को फ़ैक्टर किए बिना प्रिंट किया जाता है. इस वजह से, GraphViz का इस्तेमाल करके विज़ुअलाइज़ेशन करना मुश्किल हो जाता है. हालांकि, आसान फ़ॉर्मैट की मदद से, grep जैसे अन्य टूल से प्रोसेसिंग आसानी से की जा सकती है. जब तक --output=graph का इस्तेमाल नहीं किया जा रहा है, तब तक इस विकल्प का कोई असर नहीं होगा.

XML

--output xml

इस विकल्प से बनने वाले टारगेट, एक्सएमएल फ़ॉर्म में प्रिंट हो जाते हैं. आउटपुट इस तरह के एक्सएमएल हेडर से शुरू होता है

  <?xml version="1.0" encoding="UTF-8"?>
  <query version="2">

इसके बाद, नतीजों के ग्राफ़ में मौजूद हर टारगेट के लिए, टॉपोलॉजिकल क्रम में एक्सएमएल एलिमेंट के साथ जारी रहता है (जब तक कि बिना क्रम के नतीजों का अनुरोध न किया गया हो). इसके बाद, यह एलिमेंट,

</query>

file टाइप के टारगेट के लिए, आसान एंट्री उत्सर्जित की जाती हैं:

  <source-file name='//foo:foo_main.cc' .../>
  <generated-file name='//foo:libfoo.so' .../>

हालांकि, नियमों के लिए एक्सएमएल स्ट्रक्चर्ड होता है और इसमें नियम के सभी एट्रिब्यूट की परिभाषाएं शामिल होती हैं. इनमें वे एट्रिब्यूट भी शामिल होते हैं जिनकी वैल्यू, नियम की BUILD फ़ाइल में साफ़ तौर पर नहीं बताई गई थी.

इसके अलावा, नतीजे में rule-input और rule-output एलिमेंट शामिल होते हैं, ताकि डिपेंडेंसी ग्राफ़ की टॉपोलॉजी को फिर से बनाया जा सके. इसके लिए, यह जानना ज़रूरी नहीं है कि उदाहरण के लिए, srcs एट्रिब्यूट के एलिमेंट, फ़ॉरवर्ड डिपेंडेंसी (ज़रूरी शर्तें) हैं और outs एट्रिब्यूट के कॉन्टेंट, बैकवर्ड डिपेंडेंसी (उपभोक्ता) हैं.

अगर --noimplicit_deps तय किया गया है, तो अहम डिपेंडेंसी के लिए rule-input एलिमेंट को दबा दिया जाता है.

  <rule class='cc_binary rule' name='//foo:foo' ...>
    <list name='srcs'>
      <label value='//foo:foo_main.cc'/>
      <label value='//foo:bar.cc'/>
      ...
    </list>
    <list name='deps'>
      <label value='//common:common'/>
      <label value='//collections:collections'/>
      ...
    </list>
    <list name='data'>
      ...
    </list>
    <int name='linkstatic' value='0'/>
    <int name='linkshared' value='0'/>
    <list name='licenses'/>
    <list name='distribs'>
      <distribution value="INTERNAL" />
    </list>
    <rule-input name="//common:common" />
    <rule-input name="//collections:collections" />
    <rule-input name="//foo:foo_main.cc" />
    <rule-input name="//foo:bar.cc" />
    ...
  </rule>

टारगेट के हर एक्सएमएल एलिमेंट में एक name एट्रिब्यूट होता है, जिसकी वैल्यू टारगेट का लेबल होती है. साथ ही, एक location एट्रिब्यूट होता है, जिसकी वैल्यू --output location में दी गई, टारगेट की जगह की जानकारी होती है.

--[no]xml:line_numbers

डिफ़ॉल्ट रूप से, एक्सएमएल आउटपुट में दिखाई गई जगहों में लाइन नंबर होते हैं. --noxml:line_numbers तय करने पर, लाइन नंबर नहीं छपते.

--[no]xml:default_values

डिफ़ॉल्ट रूप से, एक्सएमएल आउटपुट में वह नियम एट्रिब्यूट शामिल नहीं होता जिसकी वैल्यू, उस तरह के एट्रिब्यूट के लिए डिफ़ॉल्ट वैल्यू होती है. उदाहरण के लिए, अगर BUILD फ़ाइल में यह एट्रिब्यूट शामिल नहीं किया गया है या डिफ़ॉल्ट वैल्यू साफ़ तौर पर दी गई है. इस विकल्प से ऐसे एट्रिब्यूट की वैल्यू, एक्सएमएल आउटपुट में शामिल हो जाती हैं.

रेगुलर एक्सप्रेशन

क्वेरी भाषा में रेगुलर एक्सप्रेशन, Java रेगुलर एक्सप्रेशन लाइब्रेरी का इस्तेमाल करते हैं. इसलिए, java.util.regex.Pattern के लिए पूरे सिंटैक्स का इस्तेमाल किया जा सकता है.

डेटा स्टोर करने की बाहरी जगहों से क्वेरी करना

अगर बिल्ड, बाहरी रिपॉज़िटरी के नियमों पर निर्भर करता है, तो क्वेरी के नतीजों में ये डिपेंडेंसी शामिल होंगी. उदाहरण के लिए, अगर //foo:bar, @other-repo//baz:lib पर निर्भर करता है, तो bazel query 'deps(//foo:bar)', @other-repo//baz:lib को डिपेंडेंसी के तौर पर दिखाएगा.